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Behavioral and Physiological Effects of Hindlimb Unloading in Rats

Overview

The overarching objective of this project was to identify changes in neural and biochemical

systems of the central and peripheral nervous systems (the CNS and PNS) that are related to

disruptions of functional motor responses, or motor control. The identification of neural and

biochemical changes that are related to sensory-motor adaptation elicited as animals react to

changes in the gravitational field was of particular interest. Thus, the major objective of this

work was to study disruptions of motor responses that arise after (sic. due to) chronic exposure to

altered gravity (G). To do this, parallel studies investigating changes in neural, sensory, and

neuromuscular systems were conducted after animals (rats) experienced chronic exposure to

conditions of altered-G. Conditions of altered-G included hyper-G produced by centrifugation,

micro-G produced by orbital flight, and simulated micro-G produced by hind limb suspension.

A second major interest was to examine the contribution of putative changes in sensory systems

to disruptions of motor responses. To do this, motor responses and reflexes of rats were studied

following chronic treatment with streptomycin sulfate (STP, an ototoxic chemical) to damage the
vestibular hair cells.

Introduction

Chronic exposure to conditions ofaltered-G has profound effects on many physiological

systems. Alterations in motor control also are well documented. All extant organisms have

evolved under constant influence of the 1-(3 field of Earth, and deviations from this gravitational

field have profound effects on motor control, spatial orientation, gaze control and equilibrium.

In addition, perceptual problems and motion sickness often occur when individuals are subjected

to new, or different, gravitational conditions (Daunton, 1996). Thus, both physiological and

sensory-motor reactions to conditions of altered-G likely contribute to the processes of

adaptation that occur during chronic exposure to either hyper-G or micro-G.

Changes in the morphology and physiology of sensory systems finely tuned to G-forces also

may be important in adaptation to conditions of altered-G. Ross (1993) has shown that the

number of synapses on gravity-sensitive hair cells changes following chronic exposure either to

hyper-G or to micro-G. In addition, electrophysiological studies during and after space flight

have shown changes in activity of otolithic afferents and otolith-related units in the vestibular

nuclei (see Daunton, 1996), and vestibulo-spinal reflexes are altered during and following space

flight (Watt et al., 1986; Reschke et al., 1986; Daunton, 1996). These effects suggest that

sensory information from the vestibular hair cells, particularly the otoliths, may be critically

involved in the processes of sensory-motor adaptation in conditions of altered-G.

The fundamental strategy of the research in this project was to conduct parallel studies of

motor responses, neural structures, and physiology to further understanding of the mechanisms

underlying sensory-motor adaptation. Studies of motor responses included examination of

postural control, orientation and locomotion following chronic exposure to hyper-G, micro-G,

and hind limb suspension (simulated micro-G) and, in some cases, after damaging vestibular hair

cells with STP. Results of studies investigating motor responses (using air-righting, swimming,
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locomotion and posture as measures) were compared with parallel studies of physiological

(EMG), neurochemical (GABA immunoreactivity, neuropeptides), and morphological effects

(neuromuscular junctions, dorsal root ganglia, spinal cord, synapses, glia) of the same treatments

using similar paradigms.

Treatment Paradigms

Because of the technical complications of testing during chronic exposure to conditions of

altered G, the basic paradigm is one in which changes induced by chronic exposure are studied in

tests conducted after the exposure (e.g., after return to 1G following a period of exposure to

hyper-G). This strategy is based on the hypothesis that this form of sensory-motor adaptation,

like other types of adaptation, involves three stages of adaptation and re-adaptation involving (1)

initiation of the processes, (2) consolidation of changes, and (3) maintenance of new status

during which responses are stabilized and continued (Daunton, 1996). Disruption in a measure

in an initial test conducted soon after removal from the chronic treatment provides an estimate of

the magnitude of change that occurred during the exposure, and thus estimates the degree of

adaptation that has occurred. Additional tests at varying durations after removal from the

chronic treatment provide an estimate of the rate of change in systems that are readapting to
normal conditions.

Conditions of altered-G were produced using hyper-G produced by centrifugation (CF),

micro-G resulting from space flight (SF), or simulated micro-G using hind limb suspension

(HLS. In all studies chronic exposure was conducted in conditions that permitted active

movements of the animals during the treatment. Studies ofaltered-G were conducted using

young, male Sprague-Dawley rats. Effects of damage to vestibular hair cells were conducted

using young, male Long-Evans (pigmented) rats (see Meza et al., 1996)

Motor Response Experiments

Although effects of altered G have been documented in humans (e.g., Lackner, 1993) and

fish (Rahmann et al., 1990), little information directly described the effects of altered G on motor

responses in other species when this project began. Consequently, it was important to identify

measures that would reliably reflect the processes of adaptation of motor systems to altered G.

This work was organized around the hypothesis that this form of sensory-motor adaptation, like

others, involves three stages of adaptation and re-adaptation involving (1) initiation of the

processes, (2) consolidation of changes, and (3) maintenance of new status during which

responses are stabilized and continued (Daunton, 1996). Behavioral testing was conducted to

identify reliable measures and to evaluate the possible timing of these three stages of adaptation,

or re-adaptation for each sensory-motor system assessed. These results then were used to relate

stages of re-adaptation to morphological and neurochemical changes found in the nervous

system.

Behavioral Measures and Effects

Two behavioral responses that are thought to be controlled importantly by input from the

otolith organs, the air-righting reflex and orientation during swimming, show significant
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disruption following exposure to hyper-G (Fox et al., 1992; 1998), and HLS (Fox et al., 1993).

While both air-righting and swimming were disrupted after exposure to 2G, neither measure was

disrupted in Rotation Control animals. Thus, both measures reflect the effects of hyper-G

independent of the rotation component of centrifugation that is used to produce hyper-G. The

recovery of normal air-righting is more rapid after 14 days of exposure to HLS than after 14 days

of exposure to 2G (Fox et al., 1998).

Both air-fighting and swimming are disrupted after treatment with STP (Meza et al., 1996).

Abnormal swimming patterns consisted of vertical swimming with rolls, barrel rolling,

corkscrew swimming and forward and backward looping. Partial recovery of swimming was

observed in animals 8 weeks after STP treatment was discontinued, but vertical swimming with

rolls remained in all animals after 8 weeks. These abnormal swimming patterns are consistent

with effects seen in mice that are congenitally otolith-deficient and suggest that treatment with

STP preferentially damages gravity-sensitive hair cells.

Effects ofhyper-G and HLS on gait walking on a hard surface and limb movement during

swimming are summarized in Fox et al. (1998). Inter-limb coordination is disrupted following

both treatments, by recovers more rapidly following exposure to 2G (see Fox et al., 1992, 1993,

1994) than following exposure to HLS where effects last for several weeks (Fox, unpublished

data). Effects of space flight and HLS are summarized in Fox et al. (1994). Six hours after

returning from orbital flight rats walked with the back dorsiflexed, the hind quarters lower than

normal, and with the tail dragging. This is in stark contrast to HLS rats which walk with the

back straight or ventro-flexed relative to normal, the hind quarters elevated, and the tail held very

high off the floor. Space flight rats also walked with extreme dorsiflexion (plantar extension) of

the ankle that resulted in foot placement similar to that seen in rats of approximately 10 days of

age.

Neurophysiological Measures

The early EMG response in hind leg muscles to sudden drop in the prone position (the Free-

Fall Response, or FFR) is dependent on the vestibular system in humans (Greenwood &

Hopkins, 1976), cats (Watt, 1976) and baboons (Lacour et al., 1978, 1979). Gruner (1989)

demonstrated this response also occurs in the rat, but did not evaluate dependence of the

response on the vestibular system. To evaluate the stimulus for this response in rats, pigmented

rats were treated chronically with intramuscular injections of STP using the method of Meza et

al. (1996) to damage otolith hair cells. These animals then were tested using the FFR method of

Gruner. Following treatment with STP the amplitude of EMG responses elicited by free-fall was

severely depressed in the lateral gastrocnemius muscle, but the amplitude of the EMG elicited by

auditory stimulation (i.e., the auditory startle reflex) was unaffected (Fox et al., 1997, see

Appendix A). These results suggest the FFR is elicited by stimulation of vestibular origin,

presumably the ototlith hair cells, in the rat as it is in other species.

To test whether the gain in the otolith portion of the vestibular system may be reduced by

exposure to hyper-G, the effects of chronic exposure to hyper-G on the FFR were investigated

using a parallel experiment. The EMG elicited by sudden fall occurred inconsistently and with

greatly suppressed amplitude (Fox, et al., 1998). This effect is consistent with the disruption of
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motor responses and x_ith the work of Ross (1993) which suggests reduced gain may occur

following hyper-G. Similar disruption has been shown during orbital flight (Watt et al., 1986)

suggesting a reduction in vestibular influence on the motor system occurs during orbital flight

(see Fox et al., 1998 for further discussion).

Neurochemical Effects

Radioimmunoassay techniques were used to investigate neurochemical effects possibly

related to adaptation to altered-G. Neuropeptide levels were assessed in brainstem, cerebellum,

hypothalamus, striatum, hippocampus, and cerebral cortex to screen for possible changes. Rats

were exposed to 2G or to rotation only (Rotation Controls) for 14 days. Levels ofthyrotropin-

releasing hormone (TRH) were increased in brainstem and cerebellum, but no changes were

observed in 13-endorphin, cholecystokinin, met-enkephalin, somatostatin, or substance P in any

areas of the CNS studied. In addition, levels of TRH were not significantly changed in areas

other than brainstem and cerebellum, and TRH was not affected in animals exposed only to the

rotational component ofcentrifugation. Thus, it appears that effects on TRH were elicited by

changes in the gravitational component of centrifugation.

Increases in TRH only in areas of the brain known to be importantly involved with vestibular

inputs and both voluntary" and reflexive motor control. These results suggest that TRH may play

a role in adaptation to altered-G as it does in adaptation following labyrinthectomy and in
cerebellar and vestibular control of locomotion as seen in studies of ataxia.

Effects of HLS and CF on adaptation in the CNS also were examined by studying GABA-

ergic neurons in rat somatosensory cortex. Following 14 days of HLS the number of GABA-

immunoreactive cells was reduced in layers Va an Vb and GABA-containing terminals also were

reduced in the same layers (see D'Amelio et al., 1996). GABA-containing terminals surrounding

the soma and apical dendrites of pyramidal cells of layer Vb were particularly affected.

Unloading of weight bearing by HLS may alter afferent input from intramuscular receptors to the

CNS and elicit reorganization of hind limb muscle groups. The reduced immunoreactivity of

GABA-ergic neurons and terminals may reflect changes in modulatory activity contributing to

compensation for altered afferent stimulation due to the treatment.

To obtain improved quantification of immunoreative terminal area we developed a light

microscope image analysis system that can be applied to studies of this type (Wu et al., 1997).

This technique is based on Fast Fourier Transform routines available in the NIH-image public

domain software. The procedure provides an objective means of measurement of area by

counting the total pixels occupied by immunoreactive terminals in sections, and minimizes the

difficulties that arise from labeling intensity, size, shape and numerical density of terminals.

This procedure was used to assess effects of exposure to hyper-G for 14 days on GABA-

immunoreactivity (GABA-IR) in rat somatosensory cortex (D'Amelio et al., 1998). The area of

GABA-IR terminals apposed to the soma of pyramidal cells in corical layer V was reduced

following chronic exposure to hyper-G but was unaffected in rotational control rats. This

reduction in GABA-IR of the terminal area around pyramidal neurons may reflect changes in

cells that are involved in reprogramming of motor outputs to achieve effective movement control

in the altered-G environment.
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Morphological Effects

The suggestion that GABA immunoreactivity may be related to modulatory activity of

GABA as part of the process of adaptation to altered-G is consistent with neuromuscular changes

observed in space flight (D'Amelio et al., 1998). Study of the adductor longus (an antigravity

muscle) after space flight revealed myofiber atrophy, segmental necrosis and regenerative

myofibers which were immunoreactive to N-CAM. Neuromuscular junctions contained axon

terminals with decreased or absent synaptic vesicles and vacant axonal spaces suggestive of

axonal sprouting. These fndings sugges that muscle regeneration and denervation and synaptic

remodeling may occur at the level of the neuromuscular junction during space flight. Such

changes could result in significant alterations of afferent feedback to the CNS and might elicit

major remodeling of neuromuscular control systems, some of which may be in rat somatosensory

cortex.
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Reprint of Abstract submitted to the Meeting of the Society for Posture and Gait
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Unexpected falls evoke electromyographic (EMG) responses in both flexor and extensor muscles
of the legs in humans, monkeys, cats and rats. This EMG response, called the free-fall response
(FFR; Gruner, 1989), is thought to play an important role in the production of appropriate muscle
tone in preparation for landing at the end of a fall (Watt, 1976). The FFR is an otolith-spinal reflex
in humans (Greenwood & Hopkins, 1976) and cats (Watt, 1976) and, although it also appears in
the rat (Gruner, 1989), the specific origin of the response has not been determined for this species.
In this experiment the impact of damage to the otolithic hair cells on the FFR was investigated to
evaluate whether this response also is an otolith-mediated reflex in the rat.

It is well known that streptomycin (STP) is an ototoxic drug that affects vestibular and auditory
hair cells. Chronic treatment of the pigmented rat with STP disrupts motor behaviors directly
related to otolithic function, leaving auditory and semicircular canal functions intact (Meza et al.,
1996). Abnormal air-fighting and swimming (vertical barrel rolls, corkscrew turns and forward
and backward loops) occur in rats treated with STP, but there is no alteration of either auditory
evoked potentials or post-rotatory nystagmus. These disruptions of air-fighting and swimming are
similar to those observed in mice and rats with congenital otoconial deficiencies. Histological
examination of vestibular hair cells of rats treated with STP reveal fused stereocilia and pyknotic
nuclei in the utricular macula while cells in the cristae and organ of Corti appear normal. These

findings suggest that chronic treatment of the pigmented rat with STP may selectively damage hair
cells in the linear-acceleration-sensitive otolith organs. Consequently, STP ototoxicity was used to
examine the impact of selective disruption of otolithic function on the FFR in rats.

Procedures

Adult male Long-Evans rats were chronically treated with intramuscular injections (Pfizer, 400
mg/kg per day) of STP in the forelegs for up to 35 days. Control rats were injected with an
equivalent volume of sterile saline. Air-righting and Swimming were tested at 21 and 35 days of
treatment to assess the extent of disruption of otolith-mediated behavior. After 35 days of
treatment, bipolar EMG electrodes were implanted in the lateral gastrocnemius (LG) and tibialis
anterior (TA) muscles to measure responses to a loud noise (startle) and to sudden falls (otolith-
spinal reflex, FFR).

Results

The auditory startle reflex remained normal in animals treated with STP implying that cochlear hair
cells were not damaged. However, magnitude of the FFR decreased in both the TA and LG
following treatment with STP (see Fig. 1), and the latency of the FFR became more variable. In
some rats, low amplitude, periodic EMG spikes reflecting apparent desynchronization of the
response occurred for up to 40 ms after stimulation by the sudden drop (see Fig. 2). This low
amplitude activity occurred on trials with and without a clearly defined FFR. These effects were
found when air-righting and swimming were only minimally disrupted, suggesting that even
minimal damage to hair ceils of the otolith organs can disrupt this response in the rat.

Reduction of the gain and disruption of synchronization in the FFR after hair cells presumably
are damaged by STP suggest that the FFR is an otolith-spinal reflex in the rat. Additional evidence

indicating that the FFR is mediated by otolithic inputs is provided by the f'mding that FFR gain is
reduced in rats subjected to hyper-gravity induced by centrifugation (Fox et al., in press).
However, the desynchronized EMG activity seen following the FFR was not observed after
chronic exposure to hyper-gravity. Thus, a reduction in gain of the FFR can occur without



disruptionsof synchronizationfollowing theFFR. In vitro studiesusingdirectapplicationof STP
haveshownrapid changesin membranepropertiesof vestibularhair cells andeffectsoncalcium
channelsin muscle. The contributionof theseSTP-inducedalterationsto changesin thegainand
synchronizationof theEMG foUowingtheFFR will beexaminedin futurestudies.

NaCl STP
TA LG

B

Fig. 1. Average EMG activity during the FFR
in Control rats (n=3) injected with NaC1 and in
rats (n=3) treated with STP.

Fig. 2. (A) Raw EMG traces illustrating
desynchronization of the EMG following free
fall in a rat treated with STP. (B) The

typically rapid return to baseline EMG
activity following the FFR in a Control rat

All traces are displayed at the same
amplification.
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ABSTRACT

The "slow" antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The
techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-
CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber
atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM
immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or
absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal
sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These
observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the
neuromuscular junction may take place during spaceflight.

In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb
representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension
("simulated" microgravity). A reduction in number of GABA-immunoreactive cells with respect to the
control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same
layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb.
On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight
and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling
and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the
reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA
immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to
compensate for the alterations in the afferent information.

© 1998 COSPAR. Published by Elsevier Science Ltd. All rights reserved

INTRODUCTION

The first section of this report will place emphasis upon some particular responses to weightlessness
observed in the adductor longus muscle of rats flown in the Soviet COSMOS flight 2044, namely, 1)
muscle fiber injury, 2) regenerative phenomena, and 3) alterations of the neuromuscular junctions. In
previous studies, investigations carried out upon different muscles after both flight and ground-based
(mostly hindlimb suspension) experiments have provided information on the effects of microgravity and
"simulated" microgravity upon morphology, metabolic properties, histochemistry and electrophysiology
(see Edgerton and Roy, for review, 1994). Through these studies we have learned that "slow" muscles,
mostly composed of type I fibers (e.g., soleus, adductor longus), carry the burden of the changes while
"fast" muscles, mostly composed of type H fibers (e.g., tibialis anterior) are relatively unaffected.
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The second section of this report will deal with the possible consequences that limb unloading may have
upon those areas of the central nervous system related to sensory inputs from muscles. Our assumption
--based on our current behavioral and morphological studies (D'Amelio et al.,1987; D'Amelio and
Daunton, 1992; Fox et al., 1993,1994)---- was that muscle atrophy produced by limb unloading could
modify sensory inputs arising from muscle receptors to the cerebral cortex. We focused our analysis on the
behavior of GABAergic neurons of the hindlimb representation of the somatosensory cortex since numerous
lines of research have demonstrated modifications in the level of GABA-IR or glutamic acid decarboxylase
(GAD) immunoreactivity in cortical intemeurons when sensory activity is altered by surgical manipulation
(Hendry and Jones, 1986; Warren et al., 1989; Akhtar and Land, 1991; see also Jones, 1990).

MATERIAL

Muscle Study

Wistar-derived male rats (SPF) from the Institute of Endocrinology, Bratislava, Czechoslovakia, aged
approximately 3.5 months and weighing on average 180 grams at launch, were used in this experiment.
Five animals per group (1 flight group and 3 control groups) were employed. The animals were not
subjected to any type of invasive procedure. The flight animals remained for 14 days exposed to the space
environment. Animal handling, launching details, as well as the procedures employed on muscle tissue have
been described elsewhere (D'Amelio and Daunton, 1992).

Cerebral Cortex Study

Hindlimb unloading by tail suspension (HLS) to simulate some of the effects of weightlessness on muscles
observed following spaceflight (SF) (see Ilyin and Oganov, 1989; Thomason and Booth, 1990; Edgerton
and Roy, 1994, for reviews) was employed for this study. Six Sprague-Dawley rats (200-250 g) were
employed. Three served as controls and three were suspended (HLS) by the tail for 14 days. The hindlimb
representation of the somatosensory cortex was identified in Nissl-stained slides by the prominent
aggregation of granular cells in layer IV. GABA-IR cell counts were done on pair of sections (control and
experimental) on the same slides. Particulars of suspension procedure, perfusion of animals,
immunostaining and methodology for quantitative analysis of GABAergic cells have been published
elsewhere (D'Amelio et al., 1996)

RESULTS

Muscle Study

The main alterations observed in all the flight animals, and not in any of the control animals, were myofiber
atrophy, segmental necrosis (frequently accompanied by extensive cellular infiltration composed of
macrophages, polymorphonuclear leukocytes and mononuclear cells) (Figure 1) and regenerating myofibers
that were immunoreactive to N-CAM (Figure 2). For the quantitative assessment of myofiber atrophy Z
band length was measffi'_d toapproximate myofiber diameter in electron microphotographs. In the flight
animals Z band length ranged from 1,460A to 2,600A with a mean of 2,095 A while in the control animals
the range was from 3,100 A to 3,500A with a mean of 3,109 A (F(1,6)= 8.55, p= .0265).

The most salient changes of the neuromuscular junctions were: absence of synaptic vesicles with
replacement by microtubules and neurofilaments, interposition of Schwann cell processes between pre- and
postsynaptic membranes, "unemployed" axonal spaces with shallow primary clefts, complete degeneration
of axon terminals, and axonal sprouting (Figures 3 and 4). Of the 40 neuromuscular junctions from flight
animals 24 (89%) showed one or more of these changes. In the 38 neuromuscular junctions from control

animals only l 1% showed one or more of these changes (X 2 = 23.38; p < .0001). No alterations of muscle
receptors (i.e., muscle spindles) was seen in our preparations.



Effects of Mtctogravity on Muscle and Cerebral Cortex a Suggested Interactzon 23"/

lOOpm ,,

A B

Fig. 1. Flight animals. In (A), longitudinal sections show segmental necrosis of myofibers (arrowheads)
accompanied by inflammatory cellular infiltration. In (B), atrophic fibers (arrowheads), edema and cellular
infiltrates mainly composed of histiocytes and polymorfonuclear leukocytes. From D'Amelio and Daunton
(1992), with permission from the publisher.

A B

Fig. 2. In (A) an N-CAM immunoreactive regenerating myofiber is shown. (B) High magnification of a
regenerating myofiber reveals that the cytoplasm contains abundant ribosomal aggregates associated with
bundles of still disorganized myofilaments (MF). Immature Z bands (Z) are also conspicuous. A visible
basement membrane (arrows) surrounds the cell. From D'Amelio and Daunton (1992), with permission
from the publisher.
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A B

Fig. 3. (A) Synchronous control. Neuromuscular junction showing a preterminal axon (arrows) that gives
rise to three axon terminals (Ax) apposing normal junctional folds. (B) Flight animal. The figure shows an
axon profile almost devoid of synaptic vesicles and containing microtubular structures and few
neurofilaments. From D'Amelio and Daunton (1992), with permission from the publisher.

• :"_-' _

A B

Fig. 4. (A) Flight animal. Neuromuscular unction displaying shrunken axon profiles (Axl and
Ax2)occupied by myelin figures. Ax3 is completely devoid of synaptic vesicles. Schwann cell processes
with degenerative alterations surround Axl and Ax2 (arrows) while Ax3 is covered by identifiable Schwann_
cell processes (arrowhead). (B) Flight animal. A myofiber undergoing necrosis (NF) shows dissolution of
myofibrillar architecture, remains of altered myofibrils (*) and chromatin clumping and lysis of nuclei. A
neuromuscular junction displays an elliptical axon profile (Ax) and junctional folds of apparently normal
morphological characteristics. The reaction product of the synaptic cleft and junctional folds corresponds to
esterase activity revealed by the staining procedure used to localize motor endplates. A small axon
suggestive of an axonal sprout (arrow and inset) occupying the same post-synaptic space as the main axon
terminal is separated from the latter by Schwann cell processes that also cover the sprout (arrowheads in
inset). From D'Amelio and Daunton (1992), with permission from the publisher.
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Cerebral Cortex Study

The number of GABA-IR cells/mm 2 of the hindlimb representation was determined for each section lying
within the boundary defined by the presence of the rostral hippocampus (Paxinos and Watson, 1986). A
total of more than 7600 GABA-IR cells were identified. Cell counts on sections of HLS and control rats that

were processed in the same immunostaining solutions were expressed for HLS as a percentage of control

(HLS GABA-IR cells/mm 2) X 100
(CONTROL GABA-IR cells/mm 2)

GABA-IR cells were scattered in 'all cortical layers, t)ut with the highest concentration in layer IV and lower
concentrations in layers I and VI. The number of GABA-IR ceils was reduced in rats subjected to HLS.
Effects of HLS, expressed as the percentage of reduction in GABA-IR cells, in each cortical layer showed
that the reduction in GABA-IR ceils varied among cortical layers with significant reductions occurring in
layers Va and Vb ( 32.75% and 22.07% respectively). Although quantitative assessment of GABAergic
terminals Cpuncta") targeting pyramidal cell soma and processes was not performed, it was obvious that
they were markedly reduced in number in layers Va and Vb when compared with controls (Figure 5).

_,-" ¢

A

Fig. 5. Microphotographs of hindlimb somatosensory cortex at the level of layer Vb stained with GABA
antiserum. (A) Tail-suspended animal. The pyramidal cells appear almost totally deprived of peripheral
GABA-IR terminals. Note that the neuropil also shows very few terminals (arrowhead) as compared with
the control in (B). (B) Control animal. Pyramidal cells surrounded by GABA-containing terminals
(arrows). Numerous GABA-IR terminals are also conspicuous in the neuropil (arrowheads). PC,
pyramidal cell; G, GABAergic cell. Magnification: 800x. From D'Amelio et at. (1996), with permission
from the publisher.

DISCUSSION

A prolific literature exists on the numerous factors involved in triggering the process of muscle atrophy and
subsequent deterioration of the myofibrillar structure in conditions of microgravity. The structural and
metabolic foundations underlying these changes have been reviewed by Ilyin and Oganov (1989).
Denervation-induced changes at the neuromuscular junctions have been reported in both spaceflight and
ground based experiments (hindlimb unloading by tail suspension) as well (Riley et al., 1990; ll'ina-
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Kakueva and Portugalov, 1977; Baranski et al., 1979; D'Amelio et al., 1987; Pozdnyakov et al., 1988). It
is interesting to note that most of the alterations that we have described in the adductor longus muscle must
have taken place during spaceflight and not as a consequence of post-flight exercise since the flight animals
were sacrificed within approximately 3-11 hours after landing. It has been shown that it takes 2-3 days for
typical mononucleated myoblasts to appear after muscle injury (Snow, 1977; Nichols and Shafiq, 1979).
We believe that the extensive necrosts, with the possible overlapping effects of the denervation-
reinnervation process, are the triggering factors for myofiber regeneration. In addition, the presence of
innervation on regenerating myofibers suggests a process of remodeling of axon terminals. Axonal
regeneration expressed by the visualization of small axon terminals (sprouting) was also seen on some
necrotic fibers.

The presence of microtubules and neurofilaments found in some axon terminals almost totally devoid of
synaptic vesicles is a/so intriguing. It seems reasonable to speculate that such appearance might be another
indication of axonal remodeling. Such remodeling may be related to variations in the metabolism of
motoneurons that trigger a reversal from a "transmitting" (stable) to a "growing" (plastic) state (Watson,
1976; Gordon, 1983). It has been shown that microtubules predominate during development and that
during the regenerative response of motoneurons there is an increase in the ratio of tubulin to neurofilament
which expresses a recapitulation of the more plastic states that take place during development (Hoffman and
Lasek, 1980; Lasek, 1981).

The alterations of the neuromuscular junctions described in this report seem to suggest a process of
denervation and remodeling during spaceflight, that is to say, a process limited to the "efferent" component
of muscle innervation. Pronounced myofiber atrophy of antigravity muscles accompanied by severe
alterations in a significant number of motor units have also been previously reported in HLS (D'Amelio et
a/.,1987; see Edgerton and Roy for review, 1994). These findings, however, only represent a fragmentary
view of the response of the neuromuscular system to spaceflight or HLS. Thus, we believed that further
research in this area would profit from the development of a more "systemic" approach that would address
questions such as, for example; what are the "functional" and/or morphological alterations of the "afferent"
component of muscle due to the extensive lesions of the myofibers, and what are the effects on areas of the
cerebral cortex related to inputs from muscle receptors. A natural result of this "systemic" approach would
be a more thorough understanding of the adaptive capabilities of the organism to altered gravitational
conditions. We thought then appropriate, as a following step, to initiate correlative studies on the most
plastic structure of the central nervous system, the cerebral cortex, in animals subjected to "simulated"
microgravity (HLS).

Consequences of limb unloading at the level of the cerebral cortex after spaceflight or HLS have not
previously been addressed. Several lines of evidence lead us to suggest that the cortical changes reported
here --reduction of GABA-IR cells and terminals in layer Va and Vb of the rat hindlimb somatosensory
cortexl result from altered proprioceptive inputs from hindlimb muscle receptors with the possible
participation of joint receptors and tendon organs. First, despite the changes described by us and others in
muscle fibers and neuromuscular junctions, no morphological changes in muscle spindles or other sensory
structures have been revealed by either light or electron microscopic observations. It is therefore likely that
after HLS or SF sensory receptors continue to convey signals to the cerebral cortex from "slow" weight
bearing muscles (e.g. soleus, adductor longus), as well as from the predominantly "fast" non-weight
bearing muscles (e.g., tibialis anterior) of the hind limbs.

Second, since receptors of the affected "slow" extensors (e.g., soleus) and the relatively unaffected "fast"
extensors (e.g., lateral and medial gastrocnemius) and "fast" flexors (e.g., tibialis anterior) apparently
remain operative following HLS or SF, a mismatch of afferent messages from these muscles to the cerebral
cortex should be expected. Since in normal conditions stretching of the antigravity soleus muscle evokes
heterogenic reflexes in lateral and medial gastrocnemius and tibialis anterior (Nichols, 1989; see also Cope
et al., 1994), an imbalance in the reflex responses of these synergetic muscles is most likely responsible for
the disruption of gait previously demonstrated by us following HLS and SF (Fox et al., 1993, 1994). That
such an imbalance can lead to changes in the cerebral cortex has been demonstrated by Sanes et al. (1992).
These investigators have suggested that sensory inputs from muscle receptors are used to adjust the neural
circuits related to the specific output functions of the motor cortex and that a mismatch between cortical
outputs and sensory inputs during active limb movements (e.g., during walking) can lead to the
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reorganization of the cortical motor outputs. Such goal-directed reorganization would be designed to
optimize function (e.g., walking) under the conditions of altered inputs from hindlimb muscles.

Thus, the modification of sensory inputs to the central nervous system due to altered functioning of
hindlimb muscles, along with the requirements for reprogramming of motor outputs to compensate for the
changes in structure and function of those same muscles, could lead to plastic modifications of the circuitry
at the cortical level. In these modifications local circuit GABAergic neurons of the cerebral cortex are the
most logical candidates to modulate the discharge frequency of pyramidal cells (see Jones, 1993) since: a)
The majority of identified local circuit neurons in the cerebral cortex are GABAergic (White, 1989), b)
GABAergic cells are present in all layers of the mammalian cerebral cortex (Ribak, 1978; Houser et al.,
1984; White, 1989) and c) The main synaptic target of all classes of GABAergic neurons are the pyramidal
cells and their processes (White, 1989). Furthermore, experiments primarily concerned with neuronal
receptive fields in the somatosensory cortex have shown that GABA-mediated intracortical inhibition
specifies size and thresholds of receptive fields of major neuronal subgroups (Hicks and Dykes, 1983;
Dykes et al., 1984; see also Jacobs and Donoghue, 1991). It has been shown that the cortical substrate
subserving tactile and proprioceptive limb placing --that is deeply disturbed after HLS (Fox, unpublished
data)--- coincide with a dense subfield of large pyramidal neurons in the deeper part of layer V (De Ryck et
al., 1992). In our experiments, layer V showed the most pronounced reduction of GABA-IR cells.

In short, as a result of the selective and differential effects of HLS on weight and non-weight bearing
muscles, corticospinal fibers would influence motoneuronal pools with either a significant number of
abnormal axon terminals innervating the atrophic antigravity muscles or with normal axon terminals
innervating non-weight bearing muscles having minimal or no alterations. As a consequence, disturbances
in the afferent signaling and feedback information from intramuscular receptors (particularly muscle
spindles) to the cerebral cortex would trigger an imbalance in the reflex organization of these synergetic
muscle groups. In turn, pyramidal tract neurons processing altered sensory information would respond with
changes in the rates of discharge that are modulated by GABAergic neurons.

The emphasis put on muscle spindles over other receptor types as responsible for the changes has a reason,
although admittedly speculative. Electrophysiological studies of the rat somatosensory cortex suggest an
overlap (co-extension) of sensory and motor areas ("sensorimotor amalgam"), particularly at the level of the
hindlimb representation where layer V contains large pyramidal cells that extend over, without interruption,
from the motor cortex (Hall and Lindholm, 1974). This type of cortical organization would seem to lend
support to the hypothesis first proposed by Phillips (1969) that information from muscle spindles to the
cerebral cortex is relayed through an oligosynaptic transcortical spindle circuit for proprioceptive signals
whose efferent limb is the corticomotoneuronal projection (see Hummelsheim and Wiesendanger, 1985, for
discussion). Several subsequent studies have provided more evidence in favor of this hypothesis (see
Landgren and Silfvenius, 1969, 1971; Mclntyre, 1974; Wiesendanger and Miles, 1982; Matthews, 1991).
Whether the decrease in GABA immunoreactivity is due to alterations in its synthetic activity or depletion
due to increased release is a matter of speculation that will require additional studies (e.g., in situ
hybridization). Furthermore, electrophysiological recordings will be necessary to assess patterns of activity
and receptive field size of cortical neurons influenced by GABA-mediated inhibition under the same
conditions. Since the changes we have described are presumably transient (normal gait is recovered after
several weeks-Fox et al., 1993, 1994) it would be important to investigate changes in GABA-IR during the
recovery process, and to assess whether these alterations may become irreversible given a sufficiently long
period of hindlimb unloading.

Changes in GABA-IR were previously reported under conditions of sensory deprivation by surgical means.
For example, Warren et al. (1989) reported a 16% decrease of glutamic acid decarboxylase (GAD)
immunoreactive cells in layer IV of the rat hindlimb somatosensory cortex 2 weeks after transection of the
sciatic nerve. In experiments conducted in monkey visual cortex after 2-3 weeks of eye enucleation, Hendry
and Jones (1986) found a 45% reduction of GABA-IR cells in layer IV. In the same region, these
investigators also showed a 36% decrease of GABA-IR cells 11 weeks after eyelid suture.

Unlike surgical deafferentation, in HLS the afferent input is not interrupted but rather significantly disrupted
by non-invasive unloading of weight-bearing muscles. Our results suggest that non-invasive manipulations
of the neuromuscular system, e.g., HLS or SF, can have significant effects on cortical circuitry. Other lines
of work based on non-invasive procedures support this possibility (see for example, Jenkins et al., 1990;
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Merzenich et al., 1990; Sanes et al., 1992). Since the central nervous system must constantly adjust
movements in response to altered environmental conditions, we believe that studies in intact animals should
be pursued to help clarify the mechanisms of cortical plasticity and adaptation under natural conditions.
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QUANTITATIVE CHANGES OF GABA-IMMUNOREACTIVE CELLS IN THE
HINDLIMB REPRESENTATION OF THE RAT SOMATOSENSORY CORTE_
AFTER 14-DAY HINDLIMB UNLOADING BY TAIL SUSPENSION. F

D'AmeI_.I" L. C. W'_ 1 R. A. Fox. 1 and N. G. Daunton.2 Dept. Psych.,t

San Jos6 St. Univ., San Jos6, CA 95192-0120, and NASA-Ames Res

Ctr. 2, Moffett Field, CA 94035-1000
In the present study l_-amlnobutyrlc acid (GABA)

immunoreactlvlty was evaluated quantitatively In the hlndllmb
representation of the rat somatosensory cortex after 14 days of tail
suspension (TS). The number of GABA-Immunoreactive cells was
reduced in cortical layers IV, Va, Vb and VI (p<0.05, p<0.0002,
p<0.02, and p<0.03 respectively) of rats subjected to TS. In addition,
the number of GABA-containing terminals, particularly those
terminals surrounding the soma and apical dendrites of pyramidal cells
in layer Vb, also were reduced throughout the same cortical layers.
Since there was no reduction in the total neuronal density of the

hindlimb representation as compared with the control animals, we
concluded that the reduction was not due to ceil death. Findings are
discussed in the context of previous morphological and behavioral
stcx:lies of tt_e neuromuscular system of TS animals and we propose that
atterations In the reflex organization of hindlimb muscle groups that
are triggered by TS elicit disturbances in the afferent signaling and
feedback from intramuscular receptors to the cerebral cortex. We
suggest that local circuit GABAergi¢ neurons modulate cortical output in
response to this altered afferent feedback.
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The present study was aimed at evaluating quantita.

tively 7-aminobutyric acid (GABA) immunoreactiv-

ity in the hindlimb representation of the rat soma-

tosensory cortex after 14 days of hindlimb unloading

by tail suspension. A reduction in the number of

GABA-immunoreactive cells ,_ith respect to the con-

trol animals was observed in layer Va and Vb.

GABA-containing terminals were also reduced in the

same layers, particularly those terminals surround-

ing the soma and apical dendrites of pyramidal cells

in layer Vb. On the basis of previous morphological

and behavioral studies of the neuromuscular system

of hindlimb-suspended animals, it is suggested that

the unloading due to hindlimb suspension alters af-

ferent signaling and feedback information from in-

tramuscular receptors to the cerebral cortex due to

modifications in the reflex organization of hindlimb

muscle groups. We propose that the reduction in im-

munoreactivity of local circuit GABAergic neurons

and terminals is an expression of changes in their

modulatory activity to compensate for the alterations
in the afferent information. _ 1996 Wiley-Liss, Inc.

Key words: immunocytochemistry, cerebral cortex,

muscle, NIH-Image

INTRODUCTION

Hindlimb unloading by tail suspension (HLS) is a

non-invasive procedure that simulates some of the effects

of weightlessness on anti_avity muscles (e.g., soleus
atrophy) observed following spaceflight (SF) (Ilyin and

Oganov, 1989; Thomason and Booth, 1990; Edgerton

and Roy, 1994, for reviews). Although the consequences

of unloading have been well-studied in the muscles, little

attention has been paid to the possible effects of hindlimb

unloading on those areas of the central nervous system

related to sensory inputs from muscles.

The primary concern of this experiment was to de-
termine whether-_-aminobutyric acid (GABA) immuno-

reactivity (GABA-IR) of local circuit cortical neurons

could be altered as a result of a non-invasive procedure

such as HLS. Our assumption--based on our current

behavioral and morphological studies (D'Amelio et al.,

1987; D'Amelio and Daunton, 1992; Fox et al., 1993,

1994)---was that muscle atrophy produced by HLS could

modify sensory inputs arising from muscle receptors to
the cerebral cortex.

We have focused the present report on the behavior

of GABAergic neurons since numerous lines of research
have demonstrated modifications in the level of

GABA-IR or glutamic acid decarboxylase (GAD) immu-

noreactivity in cortical interneurons when sensory activ-

ity is altered by surgical manipulation (Hendry and
Jones, 1986; Warren et al., 1989; Akhtar and Land,

1991; see also Jones, 1990).

MATERIALS AND METHODS

Animals

Six Sprague-Dawley rats (200-250 g) were em-

ployed for this study. Three served as controls and three

were suspended (HLS) by the tail for 14 days.

Suspension Procedure

The suspension procedure (Wronsld and Holton,

1987) consisted of the following steps: the tail was

cleaned with gauze previously soaked in 70% ethanol,

then sprayed with tincture of benzoin for protection

Received September 21, 1995; revised February 7, 1996; accepted
February 14, 1996.
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against adhesive tape irritation, and allowed to dry. A

strip of orthopedic tape was attached to a plastic suspen-

sion bar and applied to the lateral sides of the tail. The

tape was then secured by wrapping a strip of stockette

around the tail. The plastic suspension bar was then at-

tached to a pulley system mounted on the top of an

acrylic housing unit. In this manner the unloading of the
hindlimbs was achieved while the forelimbs were used

for locomotion and unimpeded access to food and water.

Body weight was recorded daily. Control rats were

housed individually in similar cages located in the same
room but had no attachments to the tail. The room was

maintained at 24°C with a 12-hr light/dark cycle.

Fixation and Sectioning

After 14 days of tail suspension the animals and

their controls were deeply anesthetized with Metophane

and immediately perfused via the heart with 50 ml 0.9%

saline, followed by 500 ml of a fixative made up of 1%

paraformaldehyde and 2% glutaraldehyde in 0.1 M phos-

phate buffer, pH 7.4. The brains were removed the same

day, immersed in fresh fixative, and stored at 4°C.

The right hemisphere was coronally blocked be-

tween Bregma -1.8 mm and Bregma -3.6 ram, where

the somatosensory representation of the hindlimb is con-

spicuous and associated with the presence of the rostral

hippocampus (Paxinos and Watson, 1986). At this level

the more rostrally located forelimb representation is no

longer present (rostral to Bregma -1.8 the somatosen-

sory cortex contains both hindlimb and the laterally ad-

jacent forelimb representations. The hippocampus is not
visible). Coronal sections 40 I.tm thick were cut on a

Vibratome and collected in TBS (0.05 M "Iris buffer-

0.9% saline, pH 7.6). Twenty serial sections per animal

were used for the staining procedures; 15 were stained

for immunocytochemistry, and 5 were Nissl stained with

cresyl violet to identify the cytoarchitectonic layers of

the hindlimb representation.

GABA Immunocytochemistry

Floating sections were Fust incubated for 5-10 min

at room temperature (RT) with 3% hydrogen peroxide in

10% methanol in TBS and subsequently rinsed 4 times in

TBS x 30 min (RT). The sections were then immersed
in GABA antiserum (Chemicon, cat. no. AB 131) or con-

trol serum (preimmune rabbit serum) diluted at 1:1,000
in TBS for 48-72 hr at 4°C, with orbital agitation. Then

they were rinsed 4 times in TBS x 30 min (RT) and
incubated for 60 rain (RT) in swine anti-rabbit IgG di-
luted 1:50 in TBS. The sections were rinsed 4 more times

in TBS x 30 min (RT) and then incubated for 60 rain

(RT) with rabbit peroxidase-antiperoxidase complex

(Sigma) diluted 1:200 in TBS. To develop reaction prod-
uct the sections were immersed in 12.5 mg diaminoben-
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zidine tetrahydrochloride in 50 ml TBS + 5 p.l 30%

hydrogen peroxide for 5-8 min. Finally, they were
rinsed in TBS, 2 changes × 10 min (RT), mounted on

gelatin coated slides, air-dried, and coverslipped with
Permount.

The sections from pairs of experimental and control

animals were processed together in the same solutions

for consistent immunostaining. For identification pur-

poses, the hemisphere of the control rat was marked with
a small hole at the level of the striatum. Sections of each

suspended and control pair were placed on the same glass

slide for counting of GABA-IR cells.

Methodology for Quantitative Analysis

A Bausch & Lomb inverted microscope equipped

with a 25 × objective was employed to complete the fin-st

steps of the analysis. The microscope was set on a table

to project the image of the slides at 58 × magnification.

The hindlimb somatosensory cortex was identified

in Nissl-stained slides by the prominent aggregation of

granular cells in layer IV. The boundaries of the hind-

limb representation were drawn on a piece of white pa-

per. The projected image of the sections stained with

GABA antiserum was superimposed on the drawing, and

GABA-IR cells intensely or moderately stained were

marked on the paper. Blood vessels as well as meningeal

foldings served as reference marks for each section. The

marking of the cells slightly exceeded the lateral and

medial boundaries of the hindlimb representation. Sub-

sequently, the coverslips of the anti-GABA stained slides

were removed by soaking in xylene, and the sections

were Nissl-stained with cresyl violet and remounted. The

Nissl staining of the slides in which the marking of the

GABA-IR cells was previously made gave us more con-

fidence in tracing the boundaries of the area and demar-

cating the cortical laminae based on the prominent gran-

ular aggregates of layer IV. The projected image of these
sections was drawn on a translucent sheet of paper. The

drawing included the boundaries of the hindlimb repre-

sentation, the reference marks, and the dividing lines of

six cortical layers identified as layers I, II/III, IV, Va,
Vb, and VI (see Zilles and Wree, 1985). This drawing

was then overlaid on the paper that had the markings of
GABA-IR cells. The boundaries of the hindlimb cortex
were then corrected and GABA-IR cells were counted in

each layer on the translucent paper (Figs. 1, 2).

The image of each layer on this translucent sheet

was captured into a Macintosh Centris 650 computer

using a Sierra Scientific Model MS4030 CCD tube cam-
era that had a macro Nikon/Nikor 55 lens and a Scion

Technology LG-3 flame grabber board in the Nubus slot

of the computer. Version 1.54 of the public domain NIH-

Image image analysis software (written by Wayne Ras-
band at the U.S. National Institutes of Health) was used
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counterstam

l\

Fig. 1. Schematic drawing of method used for quantitative analysis. See text for details.

for image acquisition and for area measurement of each

of the six layers. (The software is available electronically
via Internet by anonymous ftp from zippy.nimh.nih.gov

or from Library 9, the MacApp forum on CompuServe

and on floppy disk from NTIS, 5285 Port Royal Rd.,

Springfield, VA 22161, Part number PB93-504868.)

An image of standard square inches etched in the

copy stand was also captured and then used to compute

the correction factor for the distortion of the aspect ratio

introduced by the camera lens and the computer monitor.

Quantitative measurements of the cortical layers were

done blind by one of us (L.C.W.). The digitized images

were magnified at 2 x, and a sharpening filter was used

prior to measuring. Measurements are based on four to

eight GABA/Nissl-stained slides for each of the three

rats in each group. The measurement data and the num-
ber of GABA-IR cells for each layer were entered into

Microsoft Excel v.4.0. The frequency of GABA-IR

ceils/mm 2 area in each layer for each treatment group

was then computed.

RESULTS

The number of GABA-IR cells/mm 2 of the hind-

limb representation was determined for each section ly-

ing within the boundary defined by the presence of the
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B WM

Fig. 2. A: Microphotograph of a Nissl-stained coronal section through the hindlimb soma-
tosensory cortex showing the demarcation of the six layers in which counting of GABA-IR
cells was done. Note the aggregation of granular cells in layer IV. B: Same level as in A,
stained with GABA antiserum. WM, white matter. Magnification x 55.

rostral hippocampus. A total of more than 7,600
GABA-IR cells were identified. Cell counts were based

on four sections for one rat subjected to HLS, on six
sections for one control rat, and on eight sections for the
four (two HLS and two control) remaining rats. To elim-
inate differences in staining between pairs of rats, cell
counts on sections of HLS and control rats that were

processed in the same immunostaining solutions were
expressed for HLS as a percentage of control

(HSL GABA-IR cells/mm 2)

(CONTROL GABA-IR cells/mm z)
X 100.

GABA-IR cells were scattered in all cortical layers,
but with the highest concentration in layer IV and lower
concentrations in layers I and VI. The number of
GABA-IR cells was reduced in rats subjected to HLS.
Effects of HLS, expressed as the percentage of reduction
in GABA-IR cells, in each cortical layer is shown in
Table I. As seen in this table, the reduction in GABA-IR

cells varied among cortical layers, with significant re-
ductions occurring in layers Va and Vb.

Although quantitative assessment of GABAergic

terminals ("puncta") targeting pyramidal cell soma and
processes was not performed, it was obvious that they

were markedly reduced in number in layers Va and Vb
when compared with controls (Fig. 3).

DISCUSSION

While it is well documented that the unloading of
antigravity muscles by hindlimb suspension leads to at-
rophy, alterations of neuromuscular units, changes in
contractile properties, and the loss of coordination of
muscular contraction among different muscle groups (for
review, see Edgerton and Roy, 1994), consequences of
the unloading at the level of the cerebral cortex have not
previously been addressed. Our results indicate that un-

loading of the hindlimbs results in a significant reduction
in immunoreactivity of GABAergic cells and terminals
in layers Va and Vb of the rat hindlimb somatosensory
cortex.

Several lines of evidence lead us to suggest that the
cortical changes reported in this study result from altered
proprioceptive inputs from hindlimb muscle receptors
without neglecting the possibility of participation of joint
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TABLE i. Percentage of GABA-IR Cells in HLS Relative to Control Rats

Cortical layer

I ll/lll IV Va Vb VI

Pair A HLS/C % 108.03 93.56
Pair B HLS/C % 81.23 111.45
Pair C HLS/C % 95.72 62.61

Mean 94.99 89.21
SD 13.41 24.71
SEM 7.74 14.27
% Decrease 5.01 10.79

t test 0.65 0.76
P value >0.10 >0.10

116.38 65.01 87.35 113.13
87.48 75.72 81.55 64.60
57.84 61.02 64.90 47.26
87.23 67.25 77.93 75.00
29.27 7.60 11.65 34.14
16.90 4.39 6.73 19.71
i2.77 32.75 22.07 25.00

0.76 7.46 3.28 1.27
>0.10 <0.01" <0.05* >0.10

*Significant difference, by one-tailed test.

receptors and tendon organs. First, although we have

previously shown pronounced myofiber atrophy of anti-

gravity muscles accompanied by severe alterations in a

significant number of motor units immediately after HLS
or SF, i.e., degeneration of axon terminals and decrease

in the number or absence of synaptic vesicles (D'Amelio
et al., 1987; D'Amelio and Daunton, 1992; for review,

see Edgerton and Roy, 1994), no morphological changes
in muscle spindles or other sensory structures have been

revealed by either light or electron microscopic observa-

tions of the same material (D'Amelio, unpublished re-

sults). It is therefore likely that after HLS or SF sensory

receptors continue to convey signals to the cerebral cor-

tex from "slow" weight-bearing muscles (e.g., soleus),

as well as from the predominantly "fast" non-weight-

bearing muscles (e.g., tibialis anterior) of the hind limbs.

Second, since receptors of the affected "slow" ex-

tensors (e.g., soleus) and the relatively unaffected

"fast" extensors (e.g., lateral and medial gastrocne-

mius) and "fast" flexors (e.g., tibialis anterior) appar-

ently remain operative following HLS or SF, a mismatch

of afferent messages from these muscles to the cerebral

cortex should be expected. Since in normal conditions

stretching of the antigravity soleus muscle evokes heter-

ogenic reflexes in lateral and medial gastrocnemius and

tibialis anterior (Nichols, 1989; see also Cope et al.,

1994), an imbalance in the reflex responses of these

synergetic muscles is most likely responsible for the dis-

ruption of gait previously demonstrated by us following
HLS and SF (Fox et al., 1993, 1994). That such an

imbalance can lead to changes in the cerebral cortex has

been demonstrated by Sanes et al. (1992). These inves-

tigators have suggested that sensory inputs from muscle

receptors are used to adjust the neural circuits related to
the specific output functions of the motor cortex and that

a mismatch between cortical outputs and sensory inputs

during active limb movements (e.g., during walking) can

lead to the reorganization of the cortical motor outputs.

Such goal-directed reorganization would be designed to

optimize function (e.g., walking) under the conditions of

altered inputs from hindlimb muscles.

Thus, the modification of sensory inputs to the cen-

tral nervous system due to altered functioning of hind-

limb muscles, along with the requirements for repro-

gramming of motor outputs to compensate for the

changes in structure and function of those same muscles,

could lead to plastic modifications of the circuitry at the
cortical level. In these modifications local circuit

GABAergic neurons of the cerebral cortex are the most

logical candidates to modulate the discharge frequency
of pyramidal cells (Jones, 1993) since: 1) the majority of
identified local circuit neurons in the cerebral cortex are

GABAergic (White, 1989); 2) GABAergic cells are

present in all layers of the mammalian cerebral cortex

(Ribak, 1978; Houser et al., 1984; White, 1989); and 3)

the main synaptic targets of all classes of GABAergic

neurons are the pyramidal cells and their processes

(White, 1989). Furthermore, experiments primarily con-

cerned with neuronal receptive fields in the somatosen-

sory cortex have shown that GABA-mediated intracorti-

cal inhibition specifies size and thresholds of receptive

fields of major neuronal subgroups (Hicks and Dykes,

1983; Dykes et al., 1984; see also Jacobs and Donoghue,
1991). It has been shown that the cortical substrate sub-

serving tactile and proprioceptive limb placing--which

is deeply disturbed after HLS (Fox, unpublished data)--

coincides with a dense subfield of large pyramidal neu-

rons in the deeper part of layer V (De Ryck et al., 1992).

In our experiments, layer V showed the most pronounced
reduction of GABA-IR cells.

In short, as a result of the selective and differential

effects of HLS on weight- and non-weight-bearing mus-

cles, corticospinal fibers would influence motoneuronal

pools with either a significant number of abnormal axon

terminals innervating the atrophic antigravity muscles or

with normal axon terminals innervating non-weight-

bearing muscles having minimal or no alterations. As a

consequence, disturbances in the afferent signaling and
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Fig. 3. Microphotographs of hindlimb somatosensory cortex at the level of layer Vb stained

with GABA antiserum. A: Tail-suspended animal• The pyramidal cells appear almost totally

deprived of peripheral GABA-IR terminals. Note that the neuropil also shows very few

terminals (arrowhead) compared with the control in B. B: Control animal. Pyramidal cells

surrounded by GABA-containing terminals (arrow). Numerous GABA-IR terminals are also

conspicuous in the neuropil (arrowheads). PC, pyramidal cell; G, GABAergic cell. Magnifi-
cation x 800.
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feedback information from intramuscular receptors (par-

ticularly muscle spindles) to the cerebral cortex would

trigger an imbalance in the reflex organization of these

synergetic muscle groups. In turn, pyramidal tract neu-

rons processing altered sensory information would re-

spond with changes in the rates of discharge that are
modulated by GABAergic neurons.

The emphasis put on muscle spindles over other

receptor types as responsible for the changes has a rea-

son, although admittedly speculative. Electrophysiolog-

ical studies of the rat somatosensory cortex suggest an
overlap (co-extension) of sensory and motor areas ("sen-

sorimotor amalgam"), particularly at the level of the

hindlimb representation where layer V contains large

pyramidal cells that extend over, without interruption,

from the motor cortex (Hall and Lindholm, 1974). This

type of cortical organization would seem to lend support

to the hypothesis first proposed by Phillips (1969) that

information from muscle spindles to the cerebral cortex

is relayed through an oligosynaptic transcortical spindle

circuit for proprioceptive signals whose efferent limb is

the corticomotoneuronal projection (for discussion, see

Hummelsheim and Wiesendanger, 1985). Several subse-

quent studies have provided more evidence in favor of

this hypothesis (Landgren and Silfvenius, 1969, 1971;

Mclntyre, 1974; Wiesendanger and Miles, 1982; Mat-
thews, 1991).

Whether the decrease in GABA immunoreactivity is

due to alterations in its synthetic activity or depletion due

to increased release is a matter of speculation that will

require additional studies (e.g., in situ hybridization).

Furthermore, electrophysiological recordings will be nec-

essary to assess patterns of activity and receptive field size

of cortical neurons influenced by GABA-mediated inhi-

bition under the same conditions. Since the changes we

have described are presumably transient [normal gait is
recovered after several weeks (Fox et al., 1993, 1994)],

it would be important to investigate changes in GABA-IR

during the recovery process and to assess whether these
alterations may become irreversible given a sufficiently

long period of hindlimb unloading.

An essential difference between HLS and sensory

deprivation by surgical means is that the former alters

GABA-IR in the somatosensory cortex through non-in-

vasive unloading of weight-bearing muscles. For exam-

ple, Warren et al. (1989) reported a 16% decrease of

glutamic acid decarboxylase (GAD) immunoreactive

cells in layer IV of the rat hindlimb somatosensory cortex

2 weeks after transection of the sciatic nerve. In exper-

iments conducted in monkey visual cortex after 2-3

weeks of eye enucleation, Hendry and Jones (1986)

found a 45% reduction of GABA-IR cells in layer IV. In

the same region, these investigators also showed a 36%

decrease of GABA-IR cells 11 weeks after eyelid suture.

We believe that HLS generates a more "realistic"

chain of events than surgical deafferentation since the

afferent input is not interrupted but rather significantly

disrupted by the environmental manipulation. Our results

suggest that non-invasive manipulations of the neuro-

muscular system (e.g., hindlimb suspension, alterations

in gravitational forces as in spaceflight or hypergravity)

can have significant effects on cortical circuitry. Other

lines of work based on non-invasive procedures support

this possibility, e.g., learning of new movements, com-

pensation of rearranged movements, limb positioning ef-
fects (see Jenkins et al., 1990; Merzenich et al., 1990;

Sanes et al., 1992). Since severely disruptive surgical

interventions are rare but the central nervous system

must constantly adjust movements in response to altered
environmental conditions, we believe that studies in in-

tact animals should be pursued to help clarify the mech-

anisms of cortical plasticity and adaptation under natural
conditions.
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Hypergravity Exposure Decreases
 ,-Aminobutyric Acid Immunoreactivity in
Axon Terminals Contacting Pyramidal Cells in
the Rat Somatosensory Cortex: A Quantitative
Immunocytochemical Image Analysis
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Quantitative evaluation of y-aminobutyric acid immu-

noreactivity (GABA-IR) in the hindlimb representa-

tion of the rat somatosensory cortex after 14 days of

exposure to hypergravity (hyper-G) was conducted by
using computer-assisted image processing. The area of

GABA-IR axosomatic terminals apposed to pyrami-

dal cells of cortical layer V was reduced in rats

exposed to hyper-G compared with control rats, which

were exposed either to rotation alone or to vivarium
conditions. Based on previous immunocytochemical

and behavioral studies, we suggest that this reduction

is due to changes in sensory feedback information

from muscle receptors. Consequently, priorities for
muscle recruitment are altered at the cortical level,

and a new pattern of muscle activity is thus generated.

It is proposed that the reduction observed in GABA-IR

of the terminal area around pyramidal neurons is the

immunocytochemical expression of changes in the

activity of GABAergic cells that participate in repro-

gramming motor outputs to achieve effective move-

ment control in response to alterations in the afferent
information. J. Neurosci. Res. 53:135-142, 1998.

¢ 1998 Wiley-Liss. Inc.

Key words: y-aminobutyric acid; inhibition; hind-

limb; centrifugation; muscle receptors; afferent input;
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chronically to new conditions, but the neural mechanisms

that accomplish this adaptation are specified only par-

tially. Air righting during free fall, locomotion, and limb

movements during swimming are altered following

chronic exposure to hypergravity (hyper-G; Fox et al.,

1992). These effects are thought to reflect adaptation to

the new gravitational condition and presumably are

produced, in part, by a modified afferent input to the

central nervous system.

One possible neurochemical component of the

motor adaptation process may involve the neurotransmit-

ter ),-aminobutyric acid (GABA). GABA immunoreactiv-

ity (GABA-IR) as well as glutamic acid decarboxylase
immunoreactivity of local circuit neurons of the cerebral

cortex are greatly reduced following the surgical aboli-

tion of afferent input (Hendry and Jones, 1986: Warren et
al., 1989: Akhtar and Land, 1991: see also Jones, 1990).

In addition, afferent activity has been shown 1o regulate

GABA synthesis, and several lines of research have
established that GABA-mediated intracortical inhibition

specifies the size and thresholds of receptive fields of

major neuronal subgroups (Hicks and Dykes, 1983

Dykes et al., 1984; Hendry and Jones, 1988: Jones. 1990.
1993).

We have recently shown that GABA-IR is reduced
in local circuit interneurons and terminals of the rat

hindlimb somatosensory cortex following 14 days of

INTRODUCTION

The afference-reafference concept (for review, see

Nelson. 1996) assigns an important role 1o afferent input

during adaptation of motor behavior to new environmen-
tal conditions. Behavioral studies have demonstrated the

importance of active movement for the development of

new. effective motor programs when subjects are exposed
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hindlimb unloading by tail suspension (D'Amelio et al.,

1996). This procedure simulates some of the effects of

weightlessness on antigravity muscles (e.g., soleus atro-

phy) that are observed following space flight (for reviews,

see Ilyn and Oganov. 1989; Thomason and Booth, 1990;

Edgerton and Roy, 1994) and causes major alterations in

motor control (Corcoran et al.. 1994; Fox et al., 1994). In

combination, these findings suggest the involvement of

GABAergic activity in neural plasticity produced by a
treatment that is noninvasive to the CNS.

The goal of this experiment was to determine
whether GABA-IR is altered as a result of chronic

exposure to three times the normal gravity of earth (i.e.,

hyper-G). The hindlimb sensorimotor cortical representa-

tion was chosen for study due to its unique cytoarchitec-

tonic organization. At this level, electrophysiological

studies suggest an overlap (coextension) of sensory and

motor areas ("sensorimotor amalgam"), where layer IV

is entirely granular, and layer V contains large pyramidal
cells that extend over. without interruption, from the

motor cortex, This type of cortical organization would

seem to lend support to the hypothesis first proposed by

Phillips (1969) that information from muscle spindles to

the cerebral cortex is relayed through an oligosynaptic

transcortical spindle circuit for proprioceptive signals

whose efferent limb is the corticomotoneuronal projec-
tion (Lende, 1963; Hall and Lindholm, 1974; Hum-

melsheim and Wiesendanger, 1985). Furthermore, inves-

tigations by De Ryck et al. (1992) have shown that the

cortical substrate subserving tactile and proprioceptive

limb placing coincide with a dense subfield of large

pyramidal neurons in the deeper part of layer V at the

level of the frontal lateral agranular and the parietal
forelimb and hindlimb areas.

MATERIALS AND METHODS

Animals

Twelve young adult male rats (200-220 grams) of

the Sprague-Dawley strain (Simonsen, Gilroy, CA) were

used. They were assigned randomly to one of three

groups (n = 4/group), hyper-G (exposed to centrifuga-

tion), stationary controls (VIV), and rotation controls

(RC: tissue from one rat in the RC condition was

discarded due to deficient perfusion). The rats were

housed in pairs in shoe box style plastic cages and

maintained on standard laboratory, rodent chow. Access to

food and water was ad libitum throughout the experiment.

Experimental Procedures

Exposure to hyper-G. Hyper-G was produced

by using the 24-foot-diameter centrifuge at NASA-Ames

Research Center, Moffett Field. CA. This facility has

been used extensively in studies of the physiological
effects of hyper-G. The centrifuge has ten radial arms

with a maximum effective operating radius of 12 feet.

Holding chambers on the centrifuge are gimbaled, so they

swing out during rotation, ensuring that the resultant

gravitational forces experienced by the animals are in the
normal direction (dorsoventral).

To ensure acclimation to housing conditions, the

animals were housed in standard plastic cages placed

inside the holding chambers for 4 days prior to beginning

the treatment conditions. Following this period of acclima-

tion, rats in the experimental group were exposed to

hyper-G treatment. The centrifuge was rotated for 14 days

at 25 rpm to produce a resultant force of 3-G at the

12-foot radius where the holding chambers were located.

The centrifuge was stopped four times for 30 min _there

was a 2-day minimum between stops) during the 14-day

period for cleaning cages, replenishing food and water,

and weighing the rats. The holding chambers were lighted

by fluorescent lights on an automatically controlled 12:12

hr. light:dark cycle.

Treatment of control groups. Rats in the RC

group were housed in gimbaled cages on the centrifuge

but very near the axis of rotation (at a 1.7-foot radius).

These animals experienced the angular velocity of centrifu-

gation with only a minimal (0.06 G) increase in G force.

This control group was used to assess the effects of

angular velocity and Coriolis produced by movement
with a minimal increase in G.

Rats in the VIV (stationary) group were housed in

the centrifuge room under conditions similar to those of

the rats exposed to hyper-G or rotation li.e., caging,

lighting, temperature, humidity, acoustic noise, etc.).

These rats did not experience either rotation or altered G.

Tissue processing. After 14 days of centrifuga-

tion, the animals and their controls were deeply anesthe-

tized with Metophane (Pitman-Moore, Inc., Washington

Crossing. NJ) and perfused through the heart with 50 ml

0.9% saline followed by 500 ml of a fixative made up of

1% paraformaldehyde and 2% glutaraldehyde in 0.1 M

phosphate buffer, pH 7.4. The brains were removed the

same day. immersed in fresh fixative, and stored at 4°C.

The right hemisphere was blocked coronally between

Bregma -!.8 mm and Bregma -3.6 ram. where the

somatosensou' representation of the hindlimb is conspicu-
ous and is associated with the presence of the rostral

hippocampus (Paxinos and Watson. 1986). For identifica-

tion purposes, the hemisphere of the VIV group was
marked with a hole at the level of the striatum, and the

hemisphere of the RC group was with two holes at the
same level. Tissue sectioning and immunostaining were

performed according to procedures described elsewhere

(D'Amelio et al., 1996). Free-floating tissue sections of

centrifuged, vivarium, and rotational animals were pro-
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cessed together in the same solutions for consistent

immunostaining and then placed as a group of three

sections (staining triplets) on the same glass slide to

comprise a staining triplet.

tile i_rominent aggregation of granular ceils in layer
IV, decre_l,ed cell dcnsitx in layer Va. and the presence

of large p_lamidal cells in layer Vb (Fig. I ). Our analy-
sis was f_wuscd on GABA-IR terminals that were

Quantitative Analysis

Complete details of the image-analysis procedure

employed for quantitative purposes have been published

elsewhere (Wu et al., 1997). Pyramidal neurons were

selected when they possessed oval contours and a distinct

apical dendrite. No GABA-IR product was present in the

somata of these cells. Briefly. the basic equipment

consisted of a Macintosh Centris 650 computer (Apple

Computers, Cupertino, CA) with Scion Technology's

LG-3 frame grabber (Friederick, MD.), a light micro-

scope (Leitz Diaplan, Wetzlar. Germany) equipped with a

× 100 oil-immersion objective for observation of the

sections, and a Sierra model 4030 CCD camera (Sun-

nyvale, CA.) mounted on top of the microscope. A

public-domain software, NIH-Image version 1.59 (NIMH.

Bethesda. MD: written by Wayne Rasband and updated

frequently), was employed to capture images of pyrami-
dal neurons of layer Vb of the hindlimb representation of

the somatosensory cortex and to analyze the GABA-IR

terminals apposed to them (this software is available
electronically from zippy.nih.nimh.gov/pub/nih-image/

nih-image or from the NIH web site: http://rsb.info.nih-

.gov/nih-image). Fast Fourier Transform (FFT) routines
incorporated into this version enabled us to enhance the

terminals, making them easily differentiated from the cell

background. Essentially, after FFT processing, the stron-

ger signals of GABA+ terminals in focus became promi-

nent. with weaker signals of negatively stained somata
being reduced. A thresholding operation left only the

terminals visible. Total numbers of pixels representing

terminal areas were analyzed from the binary images, and

the perimeter length of the soma was analyzed from the

gray-scale images. The ratio of terminal area to the soma

perimeter of a cell was used as a normalized value to

evaluate changes in GABA-IR between the experimental

and the control groups.

RESULTS

The hindlimb representation of the somatosen-

so D' cortex was identified in Nissl-stained slides by

Fig. I. A: Photomicrograph of a Nissl-stained coronal section
through the hindlimb somatosensory cortex. Note the aggrega-

tion of granular cells in layer IV and the paucicellular layer Va.
B: Higher magnification of layer Vb showing large pyramidal
cells (arrows) of the type employed to quantify immunoreactive
"?-aminobutyric acidergic (GABAe_ic) terminals apposed to
them. Scale bars = 100 pm in A. 50 lam in B.
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Fig. 2. Photomicrographs of sections immunostained _ith GABA antiserum at the level of

layer Vb of the hind[imb somatosensory cortex. Three pyramidal cells are shown: vivarium

control (A), rotation control IBI, and centrifuged IC). The cells are crowned by GABA-

immunoreactive terminals (arrowheads). Note the paucit_ of terminals in C. G. GABAergic

cell. Scale bar = 25 gm.

closely apposed to the pyramidal cells of layer Vb

(Fig. 2).

Up to eight cells Imean =7. range 3-8) were

identified on each section. A normalized estimate of

terminal area on each cell was obtained as the ratio of the

total area of all identified terminals to the perimeter of the

soma of that cell. Perimeter length was corrected by

disregarding the gaps ,xhere apical and/or basal dendrites

were present. The mean of these values for all cells on

that slide was determined. These mean values were

obtained for up to five slides per animal (mean = 3.5,

TABLE I. Average Ratio of Terminal Area to Perimeter of the

Somata for Each of the It Rats Used in the Experiment*

Staining triplets 3G VIV RC

I 6.78 f3:191 9.56 (3: 18) 8.96 13: 17)

II 5.54 13: 23J 6.37 (3: 24) 4.88 (2: 16i

lit 5.27 _5: 40_ 9.41 (5: 39) 8.94 (5: 40_

IV 4.95 f3:171 6.16(3; 13) X
Mean 5.63 7.88 7.59

SD 0.S0 1.86 2.35

SEM 0.40 0.93 1.36

t test vs. VIV 3.37 -- 0.25

P value <0.05 -- >0.20

*Data are presented for staining triplets of three rats in _ hich tissue of

centrifuged 13G I, vivarium i\IV _.and rotation (RC) control rats _ere

immunostained concurrently and mounted on single slides. Numbers in

parentheses identify the number of slides and the number of cells

(slides: cells_ contributing to each mean for each rat.

range 2-5). The average value, which was used for

statistical analysis, was then computed to estimate the

normalized terminal area for each rat.

The normalized terminal area for each of the 11 rats

is summarized in Table I. Immunoreactive terminal area

was significantly less in rats subjected to hyper-G than in

vivarium control rats, but the terminal area in rats

subjected to the RC condition did not differ from the

vivarium controls (see Fig. 3).

DISCUSSION

The findings of this report demonstrate that. follo_v-

ing exposure to hyper-G, GABA-IR is significantly

reduced in axon terminals apposed to pyramidal cells of

Fig. 3. Example of digital images of three pyramidal cells (PCI

employed for quantitative analysis. A,B: Centrifuged group.

C,D: Vivarium control group. E,F: Rotation control group. The

photomicrographs on the left IA,C.E) depict the original

captured images of the cells surrounded by GABA-immunore-

active terminals larrows_. The photomicrographs on the right

IB.D.Ft depict images of the cells after Fast Fourier Transform

processing to demonstrate the selected temfinal area (dashed
outlinesI that _'as measured. There is a noticeable difference

between the terminal area around the pyramidal cell of the

centrifuged group and the tenninal areas from the vivarium and

rotation groups.
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the rat somatosensorv cortex. Overlapping of values for

animals seen in some instances apparently is due to

individual deviations. We expect that the responses to

noninvasive procedures used in our experiments are

probably more variable than those to invasive (e.g.,

surgical deafferentationl procedures, in which the experi-
mental impact is more severe. Thus, we assessed treat-

ment effects from the pooled data (mean) of each group.

The present findings as well as those from our

previous research (D'Amelio et al.. 1996) suggest that

cortical circuitry in regions related to proprioceptive
input from muscle receptors is susceptible to noninvasive

experimental manipulations. Chronic exposure to hyper-G
by means of centrifugation constitutes a novel environ-

mental condition that produces changes in behavioral and

molecular events brought about by new information

processed in specific areas of the CNS. It is our sugges-

tion that the modifications in muscle activity that are

required during hyper-G alter the afferent input from

muscle receptors, which, in turn. affects the processing of
information in the somatosensory cortex.

It is possible that our findings may represent the

immunocytochemical expression of a critical role played

by GABAergic cells to limit the activity of groups of

pyramidal neurons in order to suppress excessive excita-

tory drive as a mechanism of readjustment (see Jacobs

and Donoghue. 1991: see also Roberts. 1986, 1990).

GABAergic cells v_ould thus control degrees of inhibi-

tory and disinhibitor', influences in order to prevent

chaotic behavior of output pyramidal neurons by creating

barriers to the perturbations originated by a new proprio-

ceptive input (see Roberts. 19861. It is suggested that

these changes in proprioceptive signals elicit circuit

modifications at the cortical level, i.e., updating of the
motor program in response to the new information. Sanes

et al. (1992) have noted that sensor':' feedback from

muscle receptors to the cerebral cortex may play a

fundamental role in shaping the functional organization

of the motor output and its influence on the somatic
musculature. We beliexe that. under conditions of altered

G, similar mechanisms are brought into play, and a new

motor (adaptix'e) response is generated through circuit

modifications in response to proprioceptive feedback.

Thus, in the new environment, the requirements for

reprogramming of motor outputs to achieve the proper

muscle combination max. in fact. lead to constant plastic

modifications of the circuitry at the cortical level.

Jones (1990) has indicated that cortical changes

occur so rapidly that they hardly depend on the formation

of new connections or axon sprouting: instead, the},

depend on the patterns of neural activity arising from the

peripher3'. Furthermore. the CNS output may not recruit

the same muscles consistently to accomplish a pattern of

movement, and muscles that act synergetically may not

always be coactive to achieve a specific movement

(Buchanan et al., 1986). Latash :rod Anson (1996) suggest

that the specific combination of muscles that should be

brought into play for a required movement may not have

a unique solution. Therefore, it is reasonable to assume

that the nervous system has to continually evaluate

recruitment priorities to respond to tasks that, although
they are invariant in outcome, may not always be carried

out by the same muscle combinations (see Buchanan et

al., 1986).

There is evidence that GABAergic inhibition is

involved in the generation of spatiotemporal patterns of

muscle activity and that it also contributes to the improve-

ment of directionality index in the motor cortex to control

the activity of target muscles (Matsumura et al., 1991,

1992). Thus, as a consequence of hyper-G, synaptic

inhibition mediated by GABAergic neurons may contrib-

ute to a change of priorities for muscle recruitment at the

cortical level to implement new central strategies for

achieving effective movement outcome through the selec-

tion of different muscle groups (see Latash and Anson.
1996).

Behavioral studies conducted in our laboratory

indicate changes in gait after exposure to hyper-G.

Animals exposed to 2-G walked more slowly than

off-centrifuge control animals and adopted a form of
locomotion that resulted in increased four-footed stance.

perhaps to increase postural stability. In addition, normal

stride sequencing and the normal relationship bet_xeen

stance duration and walking speed were disrupted in

animals exposed to 2-G for 16 days. These data suggest

that different strategies lbr control of locomotion are used

following exposure to altered G (Fox et al.. 1991 ) and that

these strategies, although they are different or are seem-

ingly abnormal compared with control animal,_, effec-

tively produce a purposeful movement outcome, e.g..

swimming, walking. We believe that, under hyper-G

conditions, pyramidal cell activity--the highest central

level for the recruitment of muscle groups--is altered in

response to the new sensor 3, information and that this

change occurs, in part, due to the modulator 5' influence of

local circuit GABAergic cells whose main synaptic
targets are the pyramidal neurons (White. 1989: see Salin

and Prince, 1996).

Under our noninvasive experimental conditions, we
cannot be certain whether the decrease in GABA-IR

terminals observed in the situations of limb unloading at

I-G (D'Amelio et al., 1996) and hyper-G at 3-G reflects

alterations in the synthesis of the transmitter or depletion

due to increased release. Resolution of these questions

would require the assessment of modifications at the lexel

of gene expression or receptor-mediated synaptic events.

However, regardless of what the answers to these ques-

tions turn out to be. the}' will not detract from the fact
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that, in both situations, i.e., limb unloading at I-G or

centrifugation at 3-G. the animal is exposed to an

environmental novelta'. Thus, the decrease in GABA-IR

seen in both situations suggests that inhibitory influences

in the CNS respond as a basic adaptive mechanism to

adjust central motor control programs in conditions of

altered gravity. In brief, in our view, environmental

novelty constitutes the principal stimulus, taking prece-

dence over physical differences in gravitational forces.

On the other hand. exposure to rotation seems to

have no effect either on cortical GABA-IR or on the

performance of behavioral tasks. For example, swimming

and righting ability of rats subjected to 2-G centrifugation

showed significant impairment with respect to rotational

and vivarium control animals. No significant difference

was found between the two latter groups for the same

tasks (Corcoran et al.. 1991 ),

Despite the fact that much of what has been

expressed in the foregoing is necessarily speculative, we

believe that it provides an approach to the understanding

of modifications of neurotransmitter behavior in the CNS

when sensory motor programs are altered by environmen-

tal, i.e., noninvasive, manipulations. Most of the studies

on neuroanatomical or neurochemical modifications in

the CNS, as pointed out above, are based on sensory

deprivation by surgical means (see, e.g., Hendry and

Jones, 1986: Warren et al.. 1989: Hendry et al., 1994).

Although it seems obvious, it is important to stress the

fact that surgical deafferentation experiments are con-

cerned with effects provoked by the abolition of informa-

tion from afferent sources. ',vhereas noninvasive modifica-

tions of the afferent input, e.g.. changes in gravitational

forces, are concerned with the effects of an altered inflow

of infi)rmation and with the significance of afferent

feedback on cortical plasticity.
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Abstract
In studies to determine the neurochemical mechanisms un-

derlying adaptation to altered gravity we have investigated
changes in neuropeptide levels in brainstem, cerebellum, hypo-

thalamus, striatum, hippocampus, and cerebral cortex by ra-

dioimmunoassay. Fourteen days of hypergravity (hyperG) ex-

posure resulted in significant increases in thyrotropin-releasing
hormone (TRH) content of brainstem and cerebellum, but no

changes in levels of other neuropeptides (13-endorphin, chole-

cystokinin, met-enkephalin, somatostatin, and substance P)

examined in these areas were found, nor were TRH levels sig-

nificantly changed in any other brain regions investigated. The
increase in TRH in brainstem and cerebellum was not seen in

animals exposed only to the rotational component ofcentrifu-

gation, suggesting that this increase was elicited by the altera-

tion in the gravitational environment. The only other neuro-
peptide affected by chronic hyperG exposure was met-enkeph-

alin, which was significantly decreased in the cerebral cortex.

However, this alteration in met-enkephalin was found in both
hyperG and rotation control animals and thus may be due to

the rotational rather than the hyperG component ofcentrifuga-

tion. Thus it does not appear as if there is a gcneralizcd ncuro-

peptide response to chronic hyperG following 2 weeks of expo-
sure. Rather, there is an increase only of TRH and that occurs

only in areas of the brain known to be heavily involved with

vestibular inputs and motor control (both voluntary and auto-

nomic). These results suggest that TRH may play a role in adap-
tation to altered gravity as it does in adaptation to altered ves-

tibular input following labyrinthectomy, and in cerebellar and
vestibular control of locomotion, as seen in studies of ataxia.
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Introduction

Chronic exposure to hypergravitational (2

or 3 g) environments produced by centrifuga-

tion on a large-radius centrifuge results in

alteration ofvestibulospinal function (control

of orientation, posture, and locomotion: sup-

pression of otolith-spinal reflex response to

free fall) which gradually returns to normal

during reexposure to the normal 1 g environ-

ment [ 1-3]. Morphological studies conducted

by Ross [4] in conjunction with the cited
behavioral studies have shown that there is a

reduction in numbers of synapses on type II

hair cells in the utricular maculae of animals

exposed to chronic hypergravity (2 g). These

studies suggest that there are alterations in the

processing of vestibular inputs and in the

interaction of vestibular inputs with other

sensory, and motor circuitry as the animals

adapt to hyperG and learn to move normally

and effectively in the hyperG environment.

Several lines of evidence suggest that neuro-

peptides, particularly ACTH(_0), thyrotro-

pin-releasing hormone (TRH), and substance

P, may be involved in vestibular compensation

following unilateral labyrinthectomy or deaf-

ferentation [5-9]. Since long-term exposure to

hyperG provides another situation in which

vestibular inputs are chronically altered, we

have evaluated whether various neuropeptides

might be involved in adaptation to altered

gravity as a first attempt at identifying the neu-

ral mechanisms that participate in the adapta-

tion process. In the biochemical study reported

here we collected brain tissue tbr assessment of

changes in neuropeptide levels in various re-

gions. We were particularly interested in the

brainstem and cerebellum, since these areas

are most intimately involved with vestibulos-

pinal control of orientation, posture and loco-

motion which were found to be altered for up

to several days following 14 days of hyperG

exposure in our previous behavioral studies.

Materials and Methods

.4trimals
Male Sprague-Dawley rats (Simonsen. Gilroy. Cal-

if.), aged approximately 52-55 days at the start of the
14 days of centrifugation, and weighing 270-310 g at
time of tissue harvesting, were used. All rats were
housed 2 per cage in identical, standard "shoebox'
cages lined with bedding, and maintained on standard
rodent chow (Wayne), with free access to food
and water. Lighting was provided on a 12:12-hour
light:dark cycle. Light intensity was equated for all
cages. Animals were randomly assigned to one of three
groups: stationary, control group (n = 10). 2 g group
(n = 10). and rotation control group (n = 6). Animals in
the rotation control group were housed near the center
of rotation so that they experienced the angular veloci-
ty component of centrifugation, but not the hyperG
component. A limitation ofspace near the axis made it
possible to house only 6 animals in this group. The sta-
tionary control group, housed in the room containing
the centrifltge, experienced conditions {caging, light.
temperature, acoustic noise) similar to those of the
centrifuged groups, but did not experience rotation or

altered gravity.

Centr_litgation
HyperG was provided by the Ames Research Cen-

ter's "24 Foot Diameter Centrifuge'. For animals in the
centrifuged groups the shoebox cages were placed into
large (23.5 inches high x 39.5 inches wide × 22 inches
deep; 58.8 x 78.8 x 55 cm), opaque, ventilated enclo-
sures, suspended from the radial arms of the centrifuge
by gimbaled yokes. These yokes allowed the enclosures
to swing out with the centrifugal force produced by
rotation of the centrifuge. The smaller enclosures ( 12
inches high x 21.5 inches wide x I 1.5 inches deep:
30 x 53.8 x 28.8 cm) used to house the rotation con-
trol animals were similarly suspended from gimbaled
yokes. Thus, during centrifugation the animals were
subjected to the resultant of gravitational and centrifu-
gal forces in the normal (dorsal-ventral) direction (i.e.,
perpendicular to the cage floor). The centrifuge was
run at 20.5 rpm, providing a resultant Ibrcc of 2 g Ibr
the animals placed in the enclosures at the maximum
radius ( 12 ft - 2 g group) and 1.03 g lbr animals housed
near the axis of rotation (radius = 1.7 It: rotation con-

trol group). During the 14-day study the centrifuge was
stopped for 30 min on days 4, 7, and I 1so that animals
could be checked and weighed, cages cleaned, and food

and water replenished.
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Samph" Collection and Tissue Extraction

Immediately on stopping the centrifuge at 9.30

a.m. on day 14, animals were weighed, and trunk blood

and brain tissue were harvested following decapita-

tion, with the centrifuged animals taken first (alternat-

ing 2 g and rotation control animals). Tissue from cen-

trifuged animals was obtained between 4 and 53 rain

following centrifugation, while tissue from stationary

control animals was collected during the follo_Ang 30-

rain period. All tissue harvesting was completed within

1.5 h after stopping the centrifuge. The brainstem (in-

cluding medulla and pons), cerebellum (including the

whole cerebellum), hypothalamus, pituitary, striatum,

hippocampus, and the entire cerebral cortex were

quickly dissected out on ice and frozen on dry ice

before storage at -70"C. Blood (approximately 1 ml)

was collected in tubes, placed on ice for 30 min or less,

and then centrifuged at 4 * C and 2,000 rpm for 30 rain.

Plasma was removed and stored at -70" C. For extrac-

tion, the tissue samples were homogenized with 1.5 ml

2N acetic acid, and boiled for 10 min. An aliquot of

the extract was taken for protein determination ac-

cording to the method of Lowry et at. [10] before the

extract was centrifuged for 20 rain at 13,000 rpm and

4" C. The supernatants were aliquoted, shipped, along

with the plasma, to Hong Kong on dry. ice, and lyophi-

lized.

Radioimntmtoassa)"

TRH, met-enkephalin, substance P, somatostatin.

and cholecystokinin (CCK) were measured by ra-

dioimmunoassay (RIA) as described previously by

Tang et al. [11], Tang and Man [12], and Wang et al.

[I 3]. The antisera Ibr substance P, somatostatin, and

CCK were generous gifts from Dr. J, Hong (NIEHS.

Research Triangle Park. N.C.). while the antiserum for

TRH was kindly supplied by Dr. J,S. Kizer (University
of North Carolina). Met--enkephalin antiserum was

purchased from Incstar (Stillwater, Minn.). The speci-

ficities of the antisera have been reported elsewhere

[I 1-13]. The antiserum for I]-endorphin was raised in

Tang's laboratory and cross-reacted 70% with _lipo-

tropin on a molar basis. Corticosterone levels were

determined by RIA using antiserum obtained from

Radioassays Laboratory, following procedures de-

scribed previously [14]. Samples from stationary con-

trol, 2 g, and rotation control animals were always

measured simultaneously in the same assay. Protein

content of tissues was determined and the concentra-

tion of each neuropeptide was expressed in pg or ng per

mg protein.

Statistical.4nalysis

Statistical analyses were performed by ANOVA

using Statview 4.0 (Abacus). Specific comparisons of

values from 2g and rotation control animals with

those from stationary controls were made using Fish-

er's PLSD. Differences were considered to be signifi-

cant when p < 0.05. All values were expressed as mean

+ SEM.

Results

Thyrotropin-Releasing Hormone

Table 1 shows the results for TRH mea-

sured in all brain areas investigated. There

was a significant increase (+24%) in mean

TRH level in the brainstem of animals ex-

posed to 2 g, as compared with stationary con-

Table 1. Effects of hyperG on

-I-RH levels (pg/mg protein,

except for hypothalamus, which

is in ng/mg protein) in various

rat brain regions

Control HyperG Rotation

(n = 10) (n = 10) (n = 6)

Brainstem 287-+ 10 357 + 25* 321 ± 25

Cerebellum 28 + 2 39 ± 4* 26 - 3

Hypothalamus 3.79 :t: 0. ! 1 3.8 ± 0.18 3.49 ± 0.22

Striatum 23.:1 ± 2.26 17.4 ± 2.02* 7.0 --. 1.03*

Hippocampus 15.3+5.5 . 31.0±6.7 13.4±9.0
Cortex 6.52+0.73 6.04±0.62 7.00__+0.86

* p < 0.05 compared with control level.
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Table 2. Effects of h_rG on
met-enkephalin (pg/m8 protein,
except for hypothalamus and
striatum, which are in ng/mg
protein) in various brain regions

Control HyperG Rotation
(n = 10) (n = 10) (n = 6)

Brainstem 2.55 +-0.14 2.56 + 0.07 2.56 -+0.13
Cerebellum 754 + 34 741 + 29 870 ± 54
Hypothalamus 4.00+0.11 3.89 ±0.07 3.88 +0. i 1
Striatum 6.96+0.35 7.71 :t:0.60 7.19+0.71

Hippocampus 883 ± 32 977 + 56 888 + 46
Cortex 392+21 319+22" 314±21"

* p < 0.05 compared with control level.

Control HyperG Rotation
(n = 10) (n = 10) (n = 6)

Table 3. Effects of hyperG on
CCK (p_mg protein) in various
brain regions

Brainstem 114± 3.8 122 ± 6.2 ! 38 ± 6.4"

Hypothalamus 923 + 27 853 + 36 905 + 44
Striatum !,132 :t:44 1,1 I0-+ 54 1,135 +-53
Hiplxx:ampus 1,100 ± 71 ! .075 +-30 1.211 + 41
Cortex 430+ 18 462± 13 473± 19

* p <0.05 compared with control level.

trol animals, but not in those exposed only to

the angular velocity component of centrifuga-

tion (rotation controls). There also was a sig-

nificant increase (39%) in TRH levels in the

cerebellum of 2 g animals. In the striatum,

TRH levels were significantly decreased in

both 2 g (-26%) and rotation control (-70%)

animals compared with stationary controls,

and the decrease was significantly larger in the

rotation controls than in the 2 g animals. No

significant changes were found in any other

brain areas in either group of centrifuged ani-
mals.

Met-Enkephalin

The results of measurements of met-en-

kephalin in the various brain regions are

shown in table 2. There was a significant de-

crease (-19%) in met-enkephalin in the cere-

bral cortex of 2 g animals and a similar de-

crease (-20%) in rotation control animals as

compared with stationary controls. No other

brain areas showed significant changes in

met-enkephalin levels in either 2 g or rotation
control animals.

Cholecystokinin

CCK was measured in all investigated

brain regions except the cerebellum. The re-

suits are shown in table 3. There were no

changes in levels of this neuropeptide except
in the brainstem of rotation control animals

in which CCK was significantly increased

(+21%).
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fl-Endorphin. Somatostatin, and
Sttbstaoce P

The levels of somatostatin and substance P

were obtained from each brain region investi-

gated, while 13-endorphin was assessed only in
the brainstem and hypothalamus. None of the

levels for any of these neuropeptides showed

significant alterations as a result of exposure
to hyperG or to rotation (results not shown).

Corticosterone

Serum corticosterone was assayed to ob-
tain a measure of stress in the animals. There

was no significant difference between mean

corticosterone level in 2 g and stationary con-

trol animals (3.56 --- 0.69 vs. 3.51 +- 0.72 _tg/
ml). However, in rotation control animals the

mean corticosterone level was significantly el-

evated (14.95 ± 2.05 lag/ml) as compared

with that in both stationary control animals

and 2 g animals. The coefficient of variation
for the rotation control group (0.14) is similar

to that for the stationary control group (0.21),

suggesting that this large increase is not the

result of sampling error.

Discussion

Of the neuropeptides investigated in this

experiment, only TRH showed significant
changes related specifically to hyperG expo-

sure, and not to the rotational component of

centrifugation. These hyperG-related changes

occurred only in brainstem and cerebellum,
areas known to be involved with vestibular

control of voluntary, postural, and autonomic

functions. Thus, it seems likely that the in-
crease in TRH levels in the brainstem and cer-

ebellum may be related specifically to the pro-
cess of sensory-motor adaptation to altered

gravity. Since there is no change of TRH level

in the hypothalamus, it is probably not the
hormonal role of this peptide that is involved,

but rather the neuromodulatory role. The fact

that this neuropeptide has been shown to play
a role in vestibular compensation, another

form of sensory-motor adaptation [6, 7] lends

support to this suggestion, while the finding
that TRH levels are also elevated in the brain-

stem and cerebellum of ataxic mice suggests
that the increase of TRH in these areas may

be specifically related to disturbances of pos-

tural and locomotor control [15], a situation

which we have previously shown exists fol-

lowing chronic hyperG exposure [1, 2]. An
involvement of TRH in postural and locomo-

tor control comes as no surprise. TRH has
been found useful in the treatment of other

conditions in which locomotor and postural

control are disrupted, i.e., ataxia due to spino-

cerebellar degeneration and spinal cord injury

[e.g., 16, 17]. TRH receptors have been identi-

fied in the medial and spinal (descending)

vestibular nuclei [18], and in dorsal and ven-
tral horns of the spinal cord [19]. TRH causes

excitation of motoneurons in the spinal cord

[20, 21] and increases locomotor activity in

the rat [22]. TRH also improves locomotor
balance after bilateral labyrinthectomy [23],

and is a neurotrophic factor in cultured spinal

motor neurons [24].

A number of studies suggest that pituitary

and hypothalamic peptides (especially TRH

and ACTHt4-10)) may play an important role
in behavioral adaptation to the environment

and in learning, while other studies show that

they also facilitate vestibular compensation

[5, 9, 25-27]. Other effects of TRH possibly
related to adaptation include learning- and

memory-enhancement [e.g., 28], effects on

Purkinje cell activity [29], and facilitation of
dendritic sprouting and/or synaptic efficacy

because of its demonstrated influence on pro-

tein biosynthesis [30]. Other actions of TRH

that might promote recovery include im-
provement of blood flow, reversing or atte-

nuating physiological effects of endogenous
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opioids, and attenuating the effects of plate-

let-activating factor [I 7, 20]. Alternatively, it

has been suggested that TRH. as well as other

drugs which facilitate vestibular compensa-
tion, do so by increasing general motor activi-

ty or arousal, thus providing more opportuni-

ty to learn new sensory-motor relationships

[23].

Although the mechanism by which TRH

influences postural and locomotor control in

sensory-motor adaptation is not clear, one
possibility involves the known interaction of

TRH with dopamine receptors, producing a

dopaminergic activating effect [7, 31]. The

finding that D2 receptor stimulation can lead
to TRH release provides an interesting clue to

the dopamine/TRH interrelationship [32]

and suggests further approaches to delineating

the role of TRH in sensory-motor adaptation.
Levels of two neuropeptides were signifi-

cantly changed in both the hyperG and the
rotation control animals (i.e., TRH in the

striatum and met-enkephalin in the cortex).

The striatum is important in initiating move-

ment by sending signals through the thalamus
to the premotor cortex. Due to the different

cross-coupling forces experienced by the rota-
tion animals run at the short radius, the ves-

tibular stimulation and requirements for con-

trol of locomotion and posture are quite dif-

ferent from those experienced by the 2 g ani-

mals run at the large radius. These differences
in motor control requirements may result in
the differences in striatal TRH content in the

two groups of animals. In addition, the levels

of one neuropeptide (i.e.. CCK) were found to

be significantly altered in the brainstem of the
rotation control animals, but not the hyperG

animals. While these alterations in neuropep-

tide levels in animals exposed to a rotating
environment (i.e., both hyperG and rotation

control animalsJ are certainly of general inter-

est, they are not germane to this investigation

since we are attempting to identify those neu-

ropeptides which show changes that might be
related to the alterations in vestibular, postu-

ral and locomotor function seen following hy-

perG exposure. Since no alterations in these
functions are found in rotation control ani-

mals, it is unlikely that the neuropeptide

changes seen in both rotation and hyperG ani-
mals are relevant to our investigation.

Very high levels ofcorticosterone were de-
tected in rotation control animals, while levels

in hyperG animals were similar to those in the
stationary control group. It cannot be deter-

mined from this experiment whether the rota-
tion control animals were indeed more

stressed than the hyperG animals, or alterna-

tively, whether for some reason corticosterone

levels in the hyperG animals were suppressed.

One possible explanation may be suggested
based on the finding of decreased sensitivity

in at least the gravity-sensing portion of the

vestibular system of hyperG, but not rotation
control animals tbllowing chronic hyperG ex-

posure [2, 33]. It is possible that a short-tern1
stressful vestibular aftereffect of rotation oc-

curs in animals with normal vestibular sensi-

tivity (i.e., rotation control animals), but not

in the hyperG animals in which vestibular

sensitivity is suppressed.
While the changes seen in this biochemical

study were relatively small, it is likely that

with sampling of the specific subregions in the
brainstem and cerebellum (e.g., vestibular nu-

clei, vestibulocerebellum) where the effect oc-
curs a more dramatic response would be de-

tected. We do not know from thc present

experiment specifically what areas in the
brainstem and cerebellum are contributing to

this significant increase in TRH levels. How-
ever, experiments are underway using both

immunocytochemistry and receptor binding

techniques to identify the subregions of brain-
stem and cerebellum that may be responsible
for the increased levels of TRH found follow-

ing chronic hyperG exposure.
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the posture and gait of rats
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Introduction

Instability of posture and gait in astronauts following

spaceflight (SF) is thought to result from muscle atrophy and

from changes in sensory-motor integration in the CNS that occur

during adaptation to micro-G. Individuals are thought to have

developed, during SF, adaptive changes for the processing of

proprioceptive, vestibular and visual sensory inputs [I] with

reduced weighting of gravity-based signals and increased

weighting of visual and tactile cues [2]. This sensory-motor

"rearrangement" in the CNS apparently occurs to optimize

neuromuscular system function for effective movement and

postura! control in micro-G. However, these adaptive changes are

inappropriate for the Ig environment and lead to disruptions in

posture and'gait on return to Earth.

Few reports are available on the effects of SF on the motor

behavior of animals. Rats studied following IB.5-19.5 days of SF

in the COSMOS program were described as being .."inert,

apathetic, slow"., and generally unstable [3, p. 334]. The

hind!i._Ds of these rats were .."thrust out from the body with

fingers pulled apart and the shin unnaturally pronated" [3, p.

335]. Cn the 6th postf!ight day motor behavior was described as

similar to that observed in preflight observations.

Improved understanding of the mechanisms leading to these

changes can be obtained in animal models through detailed

analysis of neural and molecular mechanisms related to gait. To

begin this process the posture and gait of rats were examined

following exposure to either SF or hindlimb suspension (HLS),

and during recovery from these conditions.

Methods

Subjects

Eighteen Sprague-Dawley rats (130 to 155 g) were obtained

from Hat!an Laboratories for the SF study. For the HLS study 20

Sprague-Dawley rats (230 to 255 g) were obtained from Simonsen

Laboratories. Rats were randomly assigned to groups and were

maintained on 12:12 hr light:dark cycle with food and water

available ad libitum throughout the experiments.

Procedures

• _ . During the 14 day flight on STS-58, rats (n=6)

in the Flight (FL) condition were maintained individually in
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cages measuring 10.2 X 10.2 x 20.3 cm. Rats (n=6) in the Flight
Control (FC) condition were housed in cages of the samesize in
the ground colony room. Vivarium Control (VC) rats (n=6) were
housed in standard rat colony cages modified by placing a clear

acrylic divider lengthwise to create two sections measuring 22.9

X 45.7 X 20.3 cm. VC rats could rear during the 14 days of the

flight while those in the FC and FL conditions could not.

Animals in the VC and FC conditions were placed into appropriate

cages on the first day following launch. All animals were

transfered from the cages used during the flight period into

metabolic cages (30.5 X 30.5 X 30.5 cm) between 6 and 7 hr after

the time of landing (i.e., immediately after the initial test).

HLS Conditions. HLS was accomplished with a modified version

of the Morey-Holton technique [4]. A device was constructed

using Fas-Trac to attach a connector to the rat's tail. This

connector then was attached to a swivel hook that allowed free,

3600 rotation within the 30.5 X 30.5 X 30.5 cm cage. The height

of this hook was adjusted so the hindlimbs of the rats were just

off the floor when in full extension. With this procedure the

hindlimbs of the rats (n=10) were "unloaded" (HLU) from postural

(anti-gravity) support, and the animals moved about by

propelling themselves with the forelimbs. Rats (n=10) in the

control group (HLC) lived in similar cages but were not attached

to the suspension system.

Testina ?rocedures. Beginning 6 hr after landing SF rats were

encouraged to locomote across a walkway (15 X 30 X 150 cm) with

clear acrylic walls and a glass floor. Light was passed through

the glass from the front to the back edge so that foot contact

could be viewed from below and recorded on videotape [5]. This

video record was combined with a profile view of the rats on a

split-screen display. Following the initial test on the day of

landing each rat was tested after 2, 4, 7 and 14 days of

recovery (Days R2, R4, etc.) . Quantitative assessments of

posture and limb movements were made by determining X-Y

coordinates of identifiable points using a PEAK TM Technologies

Motion Analysis system.

In the HLS study rats were tested within 5 min following

removal from the suspension device (R0) and then on B2, R7, and

R14. (In addition, these animals were exposed to 3-5 tests of

the air-righting reflex and a 45-s swim test prior to testing

for gait on each test day.)

Results

Posture

When first tested 6 hr. after return from SF (R0) FL rats

walked slowly with the back dorsiflexed, the hindquarters lower

than in FC and VC animals and with the tail dragging on the

floor. Limb movements of FL rats could be described as

"hesitant." I_mediately after removal from HLS the rats also

walked slowly, but HLU rats walked with the back straight or

ventro-flexed, the hindquarters higher than HLC rats and with

the tail held off the floor. Both FL and HLU rats walked with a

sinusoidal, ve.--.ical oscillation of the pelvic region.
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Foot Placement and Hindlimb Extension during Walking

On R0 SF rats walked with extreme dorsiflexion of the ankle

(plantar extension) producing atypical foot placement that

resembled that seen in 10-day old rats [6] in which the foot

pads contact the floor only at the end of the stance phase. In

contrast, all HLS rats walked with normal foot-pad contact.

The elevation of the hindquarters and extension of the

hind!imb observed in the assessment of posture were examined

further by evaluating the distances from the base of the tail to

the floor (Fig. IA) and to the foot (Fig. IB) respectively

during walking. The base of the tail was significantly closer to

the floor on R0 in FL (p<.01) than in FC or VC rats. On R2 the

base of the tail of FL rats was higher than in FC or VC rats

(p<.01), but was not different on R7 or RI4. In contrast, the

base of the tail was significantly higher off the floor in HLU

animals than in control rats on R0 through R7 (ps<.001), but not

different from control rats on RI4. The hindlimbs were more

flexed in FL than in FC or VC rats on R0 (p<.005) but more

extended on R2 through R7 (ps<.05) . The hindlimb was more

extended in HLU rats than in control rats on R0 through R7

(ps<.03), but not different from control rats on RI4.

A
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Figure i. Elevation of the hindquarters measured as

distance from the base of the tail to the surface of the

walkway (Panel A) and leg extension measures as distance

from the base of the tail to the foot (Panel B)

Discussion

The hindlimb extension, dorsiflexion of the ankle, and

vertical oscillation of the pelvic region observed in FL and HLU

rats may result from an altered balance of flexor-extensor

muscles that is produced by treatments which decrease the

"mechanical use" of weight-bearing muscles. Atrophic effects in

SF and HLS rats are muscle-specific with slow extensors most

affected, fast extensors moderately affected and flexors least

affected [7, 8]. The effects of SF on physiological properties
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of muscle are less well known, but documented protein changes in

muscle are associated with lower excitability of the extensor

pool while the flexor pool is unaffected. Assessments of muscle

function in Salyut crewmembers indicated decreased strength and

an increased ratio between maximum amplitude of EMG and muscle

torque in leg extensors with no change in flexors [9]. These

changes presumably result in a shift toward relative dominance

of flexors over extensors.

Flexor dominance could produce dorsiflexion of the ankle

during stationary stance as reported here. In addition, when

there is extreme atrophy of the soleus, the relatively less

compromised biarticular gastrocnemius may become increasingly

important in dynamic ankle extension. Compromised activity of

the soleus could contribute to poor adjustment of the foot prior

to touchdown and to dorsiflexion during early stance when

activity of fast extensors normally is minimal. Because maximal

force of the gastrocnemius is length-dependent, gastrocnemius

activity that contributes to ankle extension may vary as the

length of the muscle changes due to biomechanical factors

related to knee and ankle extension. Such changes in force could

produce the vertical oscillation of the pelvis observed here.

Hyper-extension of the leg in SF and HLU rats may be a postural

adjustment to facilitate ankle movement by adjusting

gastronemius length to produce proper force for adaptive ankle

extension.

Footnotes

Both experiments conformed to the Center's requirements for

the care and use of animals. Support was provided by NASA Grant

NCC 2-723 and SJSU Foundation Grant 34-1614-0071 to R.A. Fox.
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SUPPRESSION OF OTOLITH-SPINAL REFLEX BY CHRONIC HYPER-

GRAVITY EXPOSURE AND STREPTOMYCIN TREATMENT. N. Daunton 1,

R. FOX "2, i. Corcomq I . P. ]'aber2and L. W._..__.Gravitational Research Branch,

NASA Ames Research Center, Moffett Field, CA and San Jose State

University, San Jose, CA.

Recent behavioral studies have shown that chronic hyperG exposure

disrupts air-righting, swimming, and orientation of rats. Similar effects are

seen in animals chronically treated with the ototoxic drug, Streptomycin

(STP), as well as in mice and rats with congenital otoconial deficiencies. To

determine whether these behavioral disruptions following hyperG or STP

exposure could be due to a decrease in gain in the otolith-spinal system, the

otolith-spinal reflex (OSR) in response to sudden free-fall (40 cm, rat in prone

position) was monitored. Following either 14 days of hyperG (2G or 3G) or 35

days of STP treatment (400 mg/kg, i.m.), pairs of EMG recording electrodes

were placed in the lateral gastrocnemius and tibialis anterior muscles of the
left hindlimb of each rat, under brief isoflurane anesthesia. When the animal

recovered from anesthesia and had normal EMG activity, at least 15 trials of

OSR were collected. Each trial was evaluated for latency and amplitude of the

response. Rats exposed to either hyperG (n=9) or STP (n=7) showed

significant attenuations of the OSR as compared with control animals (for

hyperG n= 6; for STP n=4). Following these treatments, the response was

absent or extremely low in amplitude (<2.25 mv) on over 61% of trials,

depending on the combination of muscles studied and treatment used, while

in controls low-amplitude responses were found in less than 26% of trials.

These results suggest that gain in the otolithic portion of the vestibular

system may be decreased following chronic hyperG exposure as well as after

chemical destruction of otolithic hair cells. (Supported by NASA: Task 199-

16-12-01 and Cooperative Agreement NCC2-723)
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TAIL SUSPENSION WITH AND WITHOUT HINDLIMB UNLOADING AFFECTS

NEUROMUSCULAR FUNCTION IN THE ADULT RAT. R.A. Fox'l. N.G.

jZ_tQt.0.Q2._2 LC. Wul _[__1, 1San Jose State

Univ., San Jose, CA 95192; 2NASA Ames Res. Ctr, Moffett Field, CA 94035.

Tail suspension simulates some of the effects ol spaceflight by unloading the

hindlimbs and producing changes in the structure, physiology and
biochemistry of the hindlimb neuromuscular system. We reported effects of

suspension on swimming (Corcoran et al., 1990), but effects on other
neuromuscular functions of adult rats have not been documented, nor have

the effects of tail restriction (a consequence of suspension) without

unloading. Thus, neuromuscular coordination was assessed following 14

days of hindlimb suspension (S) and of restricted tail usage (TR) in 10 rats per
group. Animals were tested immediately after suspension, and again after 2,

7, 14, 21 & 28 days. Various aspects of righting, swimming and walking were
disrupted in both S and TR animals as compared with Controls. In S animals,

air righting was significantly delayed, speed of swimming and walking

significantly slowed, and the hindlimbs hyper-extended during walking. Also,

an increase in hindlimb stride width and a shift toward moving only one toot at
a time were seen, indicating an apparent attempt to enhance stability during

walking. In both S and TR animals the forelimbs were used during swimming,
a response normally seen only in neonatal rats, and animals swam at a

significantly steeper angle. In addition, during walking, the forelimbs of S and

TR animals were placed wider apart and the pelvis was elevated. Recovery

rates varied, but some effects lasted at least 21 days, demonstrating that both

hindlimb suspension (unloading} and restricted tail usage can produce long-
lasting effects on neuromuscular function in adult rats.
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STUDY OF ADAPTATION TO ALTERED GRAVITY THROUGH

SYSTEMS ANALYSIS OF MOTOR CONTROL
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ABSTRACT

Maintenance of posture and production of functional, coordinated movement demand integration of
sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered
gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have
studied motor control in adult rats using a battery of motor function tests following chronic exposure to
various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These
treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in
consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery
from these disruptions varies depending on the function tested and the duration and type of treatment.
These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity
involves alterations in multiple sensory-motor systems that change at different rates. We propose that the
use of parallel studies under different altered G conditions will most efficiently lead to an understanding of
the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie
sensory-motor adaptation in active, intact individuals.

©1998 COSPAR. Published by Elsevier Science Ltd. All rights reserved

INTRODUCTION

While it is well known that most individuals learn to operate effectively in an altered G environment after
living for a few days in that condition, little is known about the neural mechanisms that underlie this
adaptation in sensory-motor systems. The main thrust of our research over the past few years has been to
begin to identify those neural mechanisms so that eventually we will be able to answer the question: What
neural changes occur that allow the individual to operate efficiently and effectively after a few days in new
gravitational environments? Our approach to answering this question has involved the development in rats
of behavioral measures that reflect the extent and time course of changes in postural reflexes, orientation
and locomotion induced by chronic exposure to hyper-G. We have used the results of these behavioral
studies to identify specific locations to study in the CNS and to determine the timing of our search for
modifications (e.g., structural, neurochemical, electrophysiological) in the nervous system that underlie
those changes in sensory-motor control.

61w,wd_C. aladi 

When an animal that has developed and lived in the normal IG environment of Earth is exposed to a
different gravitational environment, adjustments at all levels of the posture, orientation, and movement
control systems must take place if the individual is to operate efficiently and effectively in that new
environment. A growing body of information is available on sensory-motor adaptation during and
following exposure to micro-G. Changes have been reported in motor performance, spatial orientation.
postural control, equilibrium, and gaze control. In addition, perceptual problems and motion sickness
often occur (Daunton, 1996). Of specific importance to this work are the findings of changes in
morphology in otolithic endorgans and in physiology of otolith-spinal systems during and following
micro-G exposure. In morphological studies Ross (1993) has shown that the number of synapses in

245
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utricular hair cells increases after exposure to microgravity, while the opposite effect is found following
hyper-G exposure. Electrophysiological data obtained during and following flight have shown changes in
both spontaneous and evoked activity in otolithic afferents and otolith-related units in vestibular nuclei (see
Daunton, 1996), while evidence for alterations in otolith-mediated vestibulo-spinal reflexes during and
following spaceflight has also been shown (Watt et al., 1986; Reschke et al., 1986; see Daunton, 1996).

Because of the difficulties involved in testing animals on the centrifuge during chronic hyper-G exposure,
there is little information on sensory-motor adaptation during exposure to hyper-G. Rather, the bulk of
data comes from studies conducted at IG immediately following chronic exposures to 2G, and during re-
adaptation to normal IG (i.e., recovery). -Evidence for modification of behaviors (e.g., posture,
locomotion, swimming, righting, nystagmus) related to vestibulospinal and vestibulo-ocular function
following hyper-G exposure has been reported (e.g., Smith, 1975; Fox et al., 1992, 1993; Clark, 1974,
1976; Rahmann et al., 1990). In studies of the neural substrate following hyper-G exposure,
modifications in brainstem, cerebellum, and sensory-motor cortex have been shown (e.g., Grenell et al.,
1968; Johnson et al., 1976; Krasnov et al., 1986; Slenzka et al., 1990).

Sensory-motor Adaptation

As employed in this paper, the term "adaptation" implies a goal-directed process that tends to readjust
control systems to new environmental constraints, so that optimal functioning of the organism is attained.
In altered G, adjustments must be made to the changed relationships between sensory inputs and motor
outputs generated during active movement in the new gravitational conditions. Those alterations are due
in part to the effects of abnormal gravity on the vestibular system, since a portion of this system has
evolved specifically to sense gravitational as well as other types of linear acceleration. Thus, this system
is particularly affected by alterations in the gravitational environment. Altered vestibular input leads to
disruption of the normal relationships between sensory inputs and motor outputs, causing problems in
control of posture, orientation, and movement. Sensory-motor adaptation, however, results in the
optimization of control after a period of time in altered G.

The adaptation process is thought to be initiated by an "error" or mismatch between the actual and
expected sensory inputs generated by active movement (behavior) in the altered conditions. The "error"
or mismatch is minimized over time as adaptation occurs and sensory-motor control is re-optimized for the
new conditions (Melvill Jones, 1983). Adaptation in these systems thus involves a re-learning of
sensory-motor relationships based on the results of motor responses in the new or altered environment. It
should be emphasized that active, voluntary movement appears to be necessary for adaptation to occur.
For example, much as one can learn to ride a bicycle only by actively balancing and making appropriate
leg movements, but not by simply observing, or passively riding as a passenger, effective adaptation to
new conditions requires active participation.

The neural processes involved in sensory-motor adaptation are thought to be similar to those involved in
learning and/or in recovery from neural damage, i.e., experience-dependent neural plasticity (Liineburg
and Flohr, 1988; Melvill Jones and Berthoz, 1985; Singer, 1989). It is likely that similar generic types of
changes in the CNS (e.g., neuromodulation, changes in synaptic efficacy, "rewiring", synaptic sprouting,
reorganization of neural networks) underlie sensory-motor adaptation to various eliciting conditions (e.g.,
hyper-G, micro-G, prism-altered vision, loss of vestibular input). For this reason the insights obtained
from studies of one model of sensory-motor adaptation should be valuable for understanding the neural
substrate of adaptation in a different situation, even though the exact neural circuits and the timing of
changes may not be the same in the two situations. We feel that additional insights into the underlying
mechanisms of adaptation can be obtained by evaluating sensory-motor adapatation in a variety of eliciting
conditions. Thus we have conducted parallel studies of control of posture, orientation and locomotion
following exposure to hyper-G, micro-G, simulated micro-G (hindlimb suspension - HI.,S), and in some
cases destruction of vestibular hair cells (streptomycin treatment) to further our understanding of the
mechanisms underlying sensory-motor adaptation. We have compared the results of these parallel studies
using similar paradigms and measures (behavioral - air-righting, swimming, locomotion, posture;
physiological - EMG of Free-Fall Response; neurochemical - cholinergic receptors, GABA
immunoreactivity, neuropeptides; and morphological - neuromuscular junctions, dorsal root ganglia,
spinal cord, synapses, glia) following the different kinds of treatments.
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METHODS

In this paper we shall report on results from studies in which G was altered. The effects of altered G
exposure on air-righting, orientation during swimming, and EMG during Free-Fall were determined in
young, male Sprague-Dawley rats. The paper by D'Amelio et al. (this volume) describes results of some
parallel morpological and neurochemical studies conducted using the same paradigms of altered G
exposure.

In all studies we have used chronic exposure to altered conditions and have permitted active movement of
the animals during this exposure. Because of the technical complications of testing during chronic
exposure, especially during centrifugation or space flight, the basic paradigm we have used is one in
which changes induced by chronic exposure are studied in tests conducted after the exposure (e.g., after
return to 1G following a period of exposure to hyper-G). Disruption in a measure in an initial test
conducted soon after removal from the chronic treatment provides an estimate of the magnitude of change
that occurred during the exposure, and thus estimates the degree of adaptation that has occurred.
Additional tests at varying durations after removal from the chronic treatment provide an estimate of the
rate of change in the systems that are readapting to normal conditions.

In our studies rats are exposed to altered conditions for varying durations (typically 14 days) following
which behavioral tests (Fox et al., 1992) and neurochemical and morphological assessments (D'Amelio et
al., 1996) are made after varying periods of recovery (usually 14 days, with tests immediately after
reintroduction to the normal environment and then every few days during this recovery period). This
approach is based on the concept that three stages are involved in both the adaptation to a new
environmental condition and readaptation to the original gravitational condition. These stages of
adaptation and readaptation involve (1) an initiation stage during which the altered conditions produce
disruptions of behavior and trigger adaptive modifications, (2) a consolidation stage during which there is
partial recovery of function as adaptive changes occur, and (3) a maintenance stage during which behavior
is stabilized and the adaptive modifications are actively maintained (Daunton, 1996). Behavioral testing
allows us to evaluate the timing of these stages for each sensory-motor system and then to relate the stage
of readaptation to morphological and neurochemical changes found in the nervous system.

All of our studies have been conducted in young adult male rats (220-280 g). In studies involving
centrifugation, the 24-ft Diameter Centrifuge at Ames Research Center was used. To generate a 2G
environment, the centrifuge was rotated at 20.5 rpm. Animals were housed two per "shoe-box"-sized
cage, with four such cages housed in a gimbaled enclosure. Rotation Control groups of animals were run
in each centrifuge study to control for the effects of angular velocity. The method of Morey-Holton was
used in HLS studies, with a control group used to assess the effects of immobilization of the tail. The
micro-G study was conducted on animals kindly provided by E. Holton.

RESULTS

Behavioral Studies

Two behavioral responses that show significant disruption following hyper-G exposure are the righting
reflex and orientation during swimming. Both of these responses are thought to be based primarily on
vestibular inputs, in large part from the otolithic organs (Trune and Lim, 1983; Money and Scott, 1962)

Air-righting Reflex. The air-righting reflex (H_rd and Larsson, 1975; Huygen et aL, 1986; Igarashi and
Guittierrez, 1983; PeUis et al., 1989) was tested by dropping each rat 45 cm from a supine position into a
tank of warm water. The percentage of animals righting and time taken to right for each animal were
evaluated using frame-by-frame analysis of video recordings.

The righting reflex was disrupted (time to right significantly increased; decrease in percentage of animals
righting prior to reaching the water) in 2G but not Rotation Control animals immediately after return to IG
(Daunton, et al., 1991a, b). Normal righting returned between the 5th and 8th post-centrifuge day
following 14-day exposures (Fox et al., 1992 see Figure 1). In animals exposed to 14 days of HLS,
there is an initial deficit in righting, but normal righting recovers more rapidly, than following 2G
exposure (Fox et al., 1993).
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The disruption of the air-righting reflex seen in animals exposed to hyper-G suggests that the threshold for
detecting vertical linear acceleration (i.e., gravity) may be increased following hyper-G exposure, and for
some days thereafter, an effect possibly related to the finding of decreased synapses in Type II hair cells in
utricular maculae of 2G adapted animals (Daunton et el., 1991b; Ross, 1993).

Swimming. Swimming was used to evaluate the ability of animals to maintain normal orientation (nearly
parallel to the water surface, with nose above the water) while moving through the water - a condition in
which tactile cues to orientation are reduced. Animals with labyrinthine deficiencies, particularly
otoconial, swim underwater a great deal, while normal animals seldom do (Trune and Lira, 1983;
Petrosini, 1984; Meza et al., 1996). Video records of the animals as they swam were analysed for time
spent underwater and swimming position. A comparison of the 2G vs Rotation Control and Off-
Centrifuge Control animals showed that the 2G animals spent significantly more time underwater than
animals in the other two groups. In many cases the animals appeared to be disoriented and to swim
purposefully in a downward direction. Interestingly, this response recovered more rapidly (between 4
and 24 hrs following 2G exposure) than the air-righting response. The fact that underwater swimming
was not seen following 14 days of HLS where no vestibular effects are known provides additional
support for the suggestion that this abnormal response is vestibular in nature. (Daunton et al., 1991a; Fox
etal., 1992; 1993).

Rate of Adaptation. We have looked in detail at rate of readaptation to normal G following exposures to
2G for up to 14 days as reflected by the two measures of vestibular function - air-righting and underwater
swimming (Daunton et al., 1995). As noted above, we have found that the righting reflex has a longer
readaptation time constant (TC) than does
spatial orientation during swimming. The
TC for air righting is 4 days, with 50% of
animals righting normally on the 4th day
following 14 days of 2G exposure. For
underwater swimming, the TC is around 18
hours (Daunton, unpublished data). Thus,
while both of these behaviors are thought to
be highly dependent on vestibular,
particularIy otolithic, function, it appears
that different neural processing is involved.
During adaptation to altered G, therefore,
different functional behaviors adapt at
different rates, and reflect separate neural
mechanisms even though they may be based
on the same altered vestibular inputs.
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Other Behavioral Measures. We have
looked extensively at various aspects of gait Fig. 1. Rate of readaptation aller 14 days of exposure
during walking on a hard surface and at limb to 2 G The initiation stage (during which no.
movements during swimming. Briefly, we improvement in disruption occurs) is shown by filled
have found that gait, as assessed by bars. The consolidation stage (during which the
measures of interlimb coordination, stability response improves toward control values) is shown by
adjustments, and kinematics of limb stipled areas. Complete readaptation (Hyper-G
movements, is altered following 2G, HLS, animals not different from Controls) is indicated by a
and micro-G exposures. The effects last thin line.
several weeks in the HLS animals, while in
2G and micro-G animals recovery is faster. Various characteristics of swimming in addition to orientation
have been evaluated following HLS and 2G exposures. Following HLS, but not 2G, animals showed
disrupted interlimb coordination. Following both HLS and 2G, forelimbs were recruited during
swimming (as seen early in development); suppression of forelimb use returned more rapidly following
2G exposure (within - 2 days) than following HLS (recovery time - 1 week). In addition, following 2G
exposure, animals swam at a flatter angle to the water surface than controls, while following HLS animals
swam at a steeper angle (Fox et al., 1992; 1993; 1994).
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Neurophysiological Measures. The disruption of behaviors related to vestibular function (air righting and
swimming) and the decrease reported in the number of synapses in the otolith end organs following
exposure to hyper-G both suggest that the gain in the otolithic portion of the vestibular system may be
reduced by chronic exposure to hyper-G. To assess whether there might be a decrease in gain of the
vestibular input to the otolith-spinal system we
have investigated the effects of chronic exposure
to hyper-G on the early EMG response in hind
limb muscles to a sudden drop from the prone Drop
position (Free-Fall Response - FFR). This |
response is dependent on the vestibular system in
humans (Greenwood and Hopkins, 1976), cats
(Watt, 1976) and baboons (Lacour et al., 1978,
1979). Gruner (1989) has demonstrated that this
response also occurs in the rat. • ."

In this preliminary experiment animals were
exposed to 2.86 G for 7 or 12 days. After
removal from hyper-G, the EMG in the lateral
gastrocnemius muscle of the left hind leg was
recorded during 30 cm of free-fall. At least 15
trials of the FFR were collected from each animal.
The FFR in control rats not exposed to
centrifugation resulted in an EMG with large
amplitude and consistent latency. The FFR in rats
exposed to centrifugation was inconsistently
elicited and thus the amplitude appears greatly
suppressed (see Figure 2). These results suggest
that the gain in the otolithic portion of the
vestibular system may be decreased following
chronic exposure to hyper-G.

DISCUSSION

Hyper-G

n=4) .....

Control (n=4)

2 mv

Fig. 2. Average rectified EMG of the
gastrocnemius muscle. The average rectified
FFR was obtained over 14 to 20 tests for each
rat and then averaged to produce this figure.
The moment of release is at the start of each
trace indicated by the arrow labelled "drop'.

Disruption of this early EMG response to simulated free-fall in astronauts during orbital flight (Watt et al.,
1986) also suggests a reduction in vestibular influence on the motor system. Disruption of the reflex in
man and the FFR in rats both occurred when there was a change between environments that resulted in a
AG of minus 1 (from 1G of Earth to the micro-G of spaceflight or from 2G during centrifugation to the
normal 1G). While not suggesting that a AG from 2G to IG is equivalent to one from 1G to 0G, it is
interesting to note that the apparent reduction in magnitude in this vestibular reflex occurred following a
AG of minus 1 in both cases. This suggests that these reductions in the force of the gravitational field
may have a similar impact on this sensory-motor system. Important questions to be addressed here center
around identifying the mechanism(s) and the time course of the increase in gain in the otolithic portion of
the vestibular system that is produced by a positive AG, as, for example, by the return to the IG
environment of Earth following spaceflight. Watt et al. (1986) were unable to measure the rate of
increase in gain to normal, pre-flight levels following return from orbit, perhaps because the change
occurred too rapidly. Similarly, if one assumes that the air-righting reflex is related to gain in the otolithic

The reduced magnitude of the FFR found
following chronic exposure to hyper-G suggests
that this treatment may produce a reduction in gain
of the gravity-sensitive portion of the vestibular
system. Such a reduction would be consistent
with the morphological results reflecting a reduction in numbers of synapses in type II hair cells in rat
utricular maculae following exposure to hyper-G (Daunton et al., 1991a; Ross, 1993), and with the
behavioral results indicating disruptions of air-righting and swimming orientation reviewed here. These
results also illustrate a possible relationship between effects on morphology, behavior and
neurophysiology uncovered by studying vestibular end organs, air righting and swimming, and FFR in
parallel experiments.
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portion of the vestibular system, the observation that air-righting in rats appears to be intact following
spaceflight (Gazenko et al., 1988) further suggests that gain may be normal or possibly increased shortly
after flight.

Detailed analysis of the rate of recovery in motor responses suggests that changes underlying adaptation
of whole-body actions during unrestricted, active movements may involve multiple sensory-motor
systems. Underwater swimming recovers quickly after exposure to hyper-G suggesting a rapid response
of the sensory-motor system with return to IG. As measured by air-righting, however, the rate of
readaptation appears considerably slower. These effects suggest that while air-righting and orientation
during swimming both depend in part on vestibular input, different sensory-motor systems contribute to
the two responses.

However, our studies with the ototoxic drug streptomycin (STP) suggest a more complicated picture.
During chronic treatment with STP, disruption of underwater swimming develops at a slower rate than
disruption of the righting reflex. This finding is the reverse of rate changes during recovery from hyper-
G and suggests that more extensive damage to gravity-sensitive hair cells is required to disrupt orientation
during swimming (Meza et al., 1996). A significant difference in swimming between treated and control
animals was found only after three weeks of treatment with STP. By that time significant underwater
swimming was seen along with other abnormal swimming behavior, such as vertical barrel rolls with
head down, looping, and other patterns of swimming characteristic of otoconia-deficient animals (Trune
and Lim, 1983). Although head-down vertical barrel rolls have been observed in some rats adapted to
2G, these patterns occur infrequently unless animals are tested immediately after removal from hyper-G.
Thus, while air-righting and motor control related to orientation during swimming both depend
importantly on vestibular input under normal conditions, the fact that changes in these two measures are
not coordinated in time suggests interaction with, or the involvement of additional sensory-motor systems
that change at different rates.

It has become increasingly clear that the control of motor function results from complex interaction among
many sensory-motor systems throughout the nervous system rather than as a collection of simple input-
output relationships (Mergner and Hlavacka, 1995). Efficient motor control depends on the coordination
of high order (cortical) and lower order (peripheral) components of the sensory-motor system
(Georgopoulos, 1995). This interaction can include interplay between inputs from external receptors
(e.g.,vestibular, visual, or auditory receptors), internal sensations (e.g., proprioception and feedback
from joints, tendon organs and muscle spindles) as well as models of the outside world or our subjective
orientation (Lackner, 1993; Mittelstaedt, 1983). Because effective motor control in active, multi-linked
organisms depends on complex interaction between various systems and forms of input, understanding of
adaptation of motor control necessarily requires investigation of the entire motor system. Matthews
(1995), for example, has proposed that attention to interaction among subcomponents of the sensory-
motor system is critical in the study of motor control: "...the spinal cord has surrendered its autonomy to
the brain, but the brain can only control the limbs by talking to the spinal cord in a language that it can
understand, determined by its pre-existing circuitry; and both receive a continuous stream of feedback
from the periphery." (p. vii). We feel that adaptation to a condition of altered G necessarily involves
active movements and multiple sensory-motor systems. To achieve a full understanding of the
mechanisms of adaptation leading to effective motor control in conditions of altered G, we suggest that
parallel studies involving manipulations of both the altered G environment and the specific sensory and/or
motor systems participating in motor control should be conducted.
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F_',,;C,T_Oh,__ 3=_.A=FER=_',;TATiC% OF K",:EF_. j3,N,T A=.=--.'_E",-_
F=C, DUCES _EG EXTENS;CN AND KNUCKLE WALKING It,, =,ATS. P, A

=_,,', J, K"o_. J. Skinner. and M. Soomer. Dept of Psych San Jose
S: .J.niv., San Jose. CA _5192.0120.

The knee join[ of Sprague Dawley rats (n=24) was anestnestized tc
investigate the "o',e of joint afferent signals in gait. Intra-articuiar
rejections .2 or 3 ml) cf 40 mg/ml lidocaine-HCI were performe0
under gas anesthesia (2% isoflourane) in a repeated measures design
w_th the experimental (injection) condition counterbalanced with two
ccmrol conditions: (a) injection of saline to control for the effects of
,_ressure in the joint and (b) gas anesthesia alone.

The effects of anesthetically "deafferenting" the k.'t.ee on limb
k;"ematics were assessed from videotapes of the animals as they ,a)
tra,,,ersee a l m walkway, ib) swam across 1-m long cha_nel, anC (c)
trstted (_.t .27 m s) on a treadmill. Tests of swimming and walking
o::L;rreC 2-6 "r.ln. fo!iowing injection of lidocaine ar, d at
;_;:;oxima;e'.,,' : : ram. fol!owing i_jection when foot placement began
to become normal. Treadmill tests occurred from 8-20 min. after

injection.
During anesthetic "deafferentation" of the knee joint rats walked

with the toes clenched (i.e., "knuckle" walking), the ankle hyper-
exlended, the range of motion in the knee reduced in swing, and with
extreme vertical oscillation of the hip. Ankle effects were present in
swimming but toe clenching was absent. These effects suggest
disruption of knee afferents may prevent normal "gating" of tactile
stimulation of the foot producing extensor dominance and inhibiting
flexor activity that normally initiates the swing phase of locomotion

Supporled by NASA Grant 2-449
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EFFECTS OF SECTION AND SPONTANEOUS RF.ATTACHMENT OF THE

SOLEUS MUSCLE ON THE GAIT OF THE ADULT RAT.
Moreno. and J. Knox. Department of Psychology, San Jos6 State

University, San Jos_, CA 95192-0120.

Biomechanical action of the soteus muscle was erwninated by
sectioning the soleus muscle at the Achilles tendon in bo(h hind legs of
six adult male Sprague-Dawley rats. Gait of the rats was studie:l
through analysis of movements of the hind legs .during 7 days of

recoveqf. Foot placement was assessed as the rats spontaneously
walked across a 1-m walkway and limb kinematics were evaluated

during locomotion on a treadmill in horizontal and inclined (10 deg)
positions. Limb co_dination was characterized in a swim test. All
tests were administered Wior to surgery to determine baseline

performances and then at 4, 24, and 168 hr. after surgery.
At 4 hr. after surgery the rats walked in a slightly crouched

posture with the ankle dorsi(lexed and with no¢mal limb coocdination.
Crouching and dorsiflexion of the ankle incJeased at 24 Iv. post
surgery. Normal ankle flexion returned by 168 Iv. but the
previously normal limb coordination was disrupted at this time. Post
mortem examination indicated the soleus muscle had attached to the

lateral gasrrocnemius. These results suggest that the soleus muscle is
not critical for typical, coordinated hind leg movement in the adult
rat. The uncoordinated leg movements observed attec the soleus
attached to the gastTocnemius suggest that the CNS had not adapted

sufficiently to produce smoothly corrtrolled ankle movement.
Supported by NASA Cooperative Agreement NCC 2-723.
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The toxic action of chronic administration of streptomycin sulfate (STP) on the

vestibular hair cells of mammals is well documented. I.r-6 Preliminary findings of our
group in pigmented rats described severe alterations of motor abilities but an

absence of deleterious effects on semicircular canal function (assessed with postrota-

tory nystagmus) or auditory function (assessed with evoked auditory potentials) after

prolonged treatment with STP. These results suggest that STP specifically disrupts
otolith organ function in the rat. 6,9

Recently, we described gradual recovery of vestibular biochemistry and function

in guinea pigs following chronic treatment with STP. 7 In a morphological study in

guinea pigs treated with gentamicin rather than STP, hair cell stereocilia were

regenerated after discontinuation of gentamicin injections. 2

Because mature rodents are considered to have ceased production of sensory and

neuronal elements, these findings are intriguing, and they encouraged us to investi-

gate further the deleterious effects of STP and the possible mechanism involved in

recover3' after chronic administration of this antibiotic in the mammalian ear using
the pigmented, Long-Evans rat as a model. The aim of our work is (a) to confirm an

otolithic organ toxicity for STP, (b) to identify the cell type affected, and (c) to assess
whether recovery occurs in the pigmented rat.

In this paper we report analysis of swimming behavior and morphology by optical

microscopy of the sensory epithelium of the utricle in the pigmented rat during and
following STP treatment.

aThis project was financed in part by grant 400346-5-4712-N from CONACyT to G.M.
rE-mail: gmeza@ifcsun I.ifisiol.unam.rnx
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METHODOLOGY

Treatment Protocol

Twenty-day-old male Long-Evans rats were used in this study. Seventeen animals

were injected daily intramuscularly for 48 to 57 days with 400 mg/kg body weight of

STP (PISA Laboratories, Mexico) dissolved in physiological saline (SPS). Eleven
rats served as controls and received SPS injections for the same time interval and

conditions as their experimental comates. Three of the 57-day-treated rats and three
of the SPS-injected animals were used to follow recovery for 8 to 12 weeks and did
not receive any STP or SPS beyond the 48th day.

Swimming Analysis

Swimming behavior was assessed at approximately one-week intervals by placing
the rats in a water tank at 27"C and recording, on videotape, swimming activity for 45

sec. Analysis and classification of swimming patterns were performed after the test.

r_LE t. Percentage of Rats Displaying Each of the Disrupted Swimming Patterns

Swimming Characteristics

Vertical Swimming Barrel Corkskrcw Forward/Backward
Experimental Condition with Roll Rolling Swimming Looping

48 Days of Treatment 90 60 80 40
8 Weeks Post Treatment 100 0 33 0

Morphology

After completion of each experimental manipulation, two of the 48-day-treated
rats and two of the treated and allowed to recover animals, plus two of the SPS

injected rats were deeply anesthetized and transcardially perfused with aldehyde

fixative. The auditory bullae were extracted and postfixed in 1% osmium tetroxide,

dehydrated, and embedded in Araldite. Vestibular organs and half turns of cochlear
duct were sectioned at l-l.tm thickness, stained with methylene blue and azure II, and

examined by brightfield microscopy.

RESULTS AND DISCUSSION

Abnormal swimming patterns consisting of vertical swimming with rolls, barrel

rolling, corkscrew swimming, and forward and backward looping were observed with

varying frequencies in rats treated with STP. None of these responses was observed

in any test of control rats. Eight weeks post treatment, vertical swimming with rolls
remained in all rats. One of the three rats showed corkscrew swimming, but no rat

showed barrel rolling or looping. Hence, partial functional recovery was observed

(see TABLE 1).
Histological examination of STP-treated rats revealed that in the utricular

macula sensory cells presented fused stereocilia and pyknotic nuclei. In addition,
some of these sensory cells were in the process of being extruded from the epithelium
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(FIG. 1). In contrast, sections of the cristae and organ of Corti appeared normal. In
STP-treated and "recovered" animals, neither fused macular hair cell stereocilia nor

pyknotic nuclei were observed, but bundle density was reduced. Thus, a partial

recovery of sensory epithelium morphology also occurred.
The abnormal swimming behavior observed in rats chronically treated with STP

is identical to that observed in congenitally otolith-deficient mice and supports our

postulation of otolith organ-specific toxicity of STP in the rat. This is confirmed by

our observation that degeneration of hair cells is restricted to the macular organs of

antibiotic-treated rats. The partial reversibility of abnormal swimming behavior in

animals eight weeks following treatment is in accord with our observations of partial
morphological recovery in the same animals. These results show that hair cell and

functional recovery can occur in a mammal subjected to prolonged treatment with a
clinically relevant toxic agent.
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THE EFFECT OF GALVANIC TRANSLABYRINTHINE UTR1CULAR

STIMULATION ON FOS EXPRESSION IN THE GERBIL BRAIN AND

SPINAL CORD I.V. Po_yakov*', G.D. Kaufman", N.G. Daunton', R.A.
Fox, and A.A. Perachio. Gravitational Research Branch, NASA Ames

Research Center, Moffett Field, CA, :Dept. of Otolaryngology, Univ. TX

Med. Branch, Galveston, TX _and _San Jose State Univ., San Jose, CA.

Previous research has shown that translabyrinthine galvanic stimulation

results in different patterns of Fos expression in central neurons

depending on the location of the stimulating electrode in reference to
specific vestibular end-organs (Kaufman and Perachio, 94). By directing

the stimulus through one of the otolith organs, we attempted to model the

effect that might be induced by novel gravito-inertial environments.

Under general anesthesia, a silver electrode was placed against thinned
bone overlying the utricular macula. The following, day, cathodai

(excitatory) current (50 IzA) was applied for 30 minutes to alert animals.

Animals were perfused I hour later. Fos immunoreactivity (Fos-IR) was

determined by using the avidin-biotin immunoperoxidase method. Sham

surgeries were performed to rule-out non-galvanic Fos expression. In
stimulated animals, light microscopic observations revealed Fos-IR cells in

asymmetrical patterns in the medial vestibular, prepositus, and inferior

olivary nuclei. Lumbar spinal cord sections showed contralaterai Fos-IR
cells in the dorsal horn laminae, while cervical sections also had central

and ventral horn labeling. Fos-IR cells were also observed in layers II, III
and IV of the contralateral sensorimotor cortex. These observations might

represent vestibulospinal and vestibulocortical plasticity with regard to

adaptive changes elicited by altered gravitational inputs. Supported by
NASA: NRC Associateship. TASK 199-16-12-01, and NAGW-5064.
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Abstract

The present report describes a desktop computer-based method for the quantitative assessment of the area occupied by
immunoreactive terminals in close apposition to nerve cells in relation to the perimeter of the cell soma. This method is based on
Fast Fourier Transform (FFT) routines incorporated in NIH-Image public domain software. Pyramidal cells of layer V of the
somatosenso_' cortex outlined b v GABA immunolabeled terminals were chosen for our analysis. A Leitz Diaplan light
microscope was employed for the visualization of the sections. A Sierra Scientific Model 4030 CCD camera was used to capture
the images into a Macintosh Centris 650 computer. After preprocessing, filtering was performed on the power spectrum in the
frequency domain produced by the FFT operation. An inverse FFT with filter procedure was employed to restore the images to
the spatial domain. Pasting of the original image to the transformed one using a Boolean logic operation called "AND'ing
produced an image _xith the terminals enhanced. This procedure allowed the creation of a binary image using a well-defined
threshold of 128. Thus. the terminal area appears in black against a white background. This methodolo_' provides an objective
means of measurement of area by counting the total number of pixels occupied by immunoreactive terminals in light microscopic
sections in which the difficulties of labeling intensity, size, shape and numerical density of terminals are avoided. _ 1997 Elsevier
Science B.V.

Keywords: Image analysis: FFT: NIH-image: Quantitative immunocytochemistry: GABA; Somatosensory cortex: Light mi-

croscopy

1. Introduction

The quantitative assessment of antibody immunocy-

tochemistry in light microscopic sections presents well
known difficulties. These include non linearity of opti-

cal density measurements of immunoreactive products,

uneven lighting and subjective evaluation of staining

intensity. In the course of our research (D'Amelio et al.,

1996) we explored the possibility of decreasing subjec-

tive bias by using a computer-based image analysis

technique to measure the area (in pixels) occupied by

*Corresponding author. Tel.: + I 415 6044817; fax: + I 415

6040046: e-mail: fdamelio_ mail.arc.nasa.gov

0165-027097 S17.00 _ 1997 Elsevier Science B.V. All rights reser,'ed.

PII SO 165-0270197)02266-8

immunoreactive terminals in close apposition to nerve

cells. Other approaches with similar purposes have

previously been reported (Vincent et al., 1994).

2. Materials and methods

2. I. Animals, perfusion fixation and sectioning

Sprague-Dawley rats (200-250 g) were employed for

this study. The animals were deeply anesthetized with

Metophane _ and immediately perfused via the heart
with 50 ml of 0.9% saline, followed by 500 ml of a

fixative made up of I% paraformaldehyde and 2%
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glutaraldehyde in 0.1 M phosphate buffer, pH 7.4.
The brains were removed the same day, immersed in

fresh fixative and stored at 4°C. The right hemisphere

was coronally blocked between Bregma - 1.8mm and

Brem'na -3.6mm, where the somatosensory represen-

tation of the hindlimb is conspicuous and associated

with the presence of the rostral hippocampus (Paxinos
and Watson, 1986). Coronal sections 40pm thick were

cut on a Vibratome _ and collected in TBS (0.05 M

Tris buffer, 0.9% saline, pH 7.6).

2.2. hnmunocytochemisto"

The tissue sections, both experimental and control,

were processed together in the same solutions to mini-

mize labeling differences.

Floating sections were incubated for 5-10 min at

room temperature (RT) with 3% hydrogen peroxide in
10% methanol in TBS and subsequently rinsed four

times in TBS x 30 min (RT). The sections were then
immersed in GABA antiserum (Chemicon, Cat. #

AB131) or control serum (preimmune rabbit serum)
diluted at 1:I000 in TBS for 48-72 h at 4cC, with

orbital agitation. Then, they were rinsed four times in

TBS × 30 min (RT) and incubated for 60 rain (RT) in

swine anti-rabbit IgG diluted 1:50 in TBS. The sec-
tions were rinsed four more times in TBS × 30 min

(RT) and then incubated for 60 min (RT) with rabbit

peroxidase-antiperoxidase complex (Siam-ha) diluted
1:200 in TBS. To develop reaction product the sec-

tions were immersed in 12.5 mg diaminobenzidine te-

trahydrochloride (DAB) in 50 ml TBS + 5 pl 30°,'o

hydrogen peroxide for 5-8 rain. Finally, the sections
were rinsed in TBS, two changes × 10 min (RT),

mounted on gelatin coated slides, air-dried and cover-

sliped with Permount _.

2.3. Image analysis equipment

2.3.1. Light microscope
Sections were observed under a light microscope

(keitz Diaplan) equipped with a I00 W halogen lamp
and with a Fluotar 100 1.32 oil immersion objective.

Two filters (a Kodak Polycontrast photographic filter

# 1(12) and a Wratten gelatin filter # 15, deep yel-

low) were placed in the microscope light path to en-
hance contrast and increase accuracy of focus.

2.3.2. b_zage analysis system

Images were captured using a Sierra Scientific (Sun-

nyvale, CA) Model 4030 CCD camera. This is a black
and white video-rate camera with 640 horizontal scan

lines and 492 vertical scan lines. It was mounted on

the microscope body connected to a Scion Technol-

ogy (Friederick, MD) LG-3 frame grabber board in-
stalled in a Nubus slot in a Macintosh Centris 650

computer (Cupertino, CA). The LG-3 board samples

the analog video signals from the camera into a

640 x 480 grid of pixels with a resolution of eight
bits. The brightness level of each pixel ranges from 0

to 255 gray levels as it is converted into the digital

image. The public domain software, NIH-Image v.
!.59 (written by Wayne Rasband, NIMH, Bethesda,

and updated frequently), was used to capture images
and to analyze the GABA-IR terminals. This software

is available electronically from the Internet by anony-

mous FTP from zippy.nih.nimh.gov/pub/nih-image'

nih-image or from the NIH's Web site

(http://rsb.in fo.nih.gov/nih-image).

2.4. bnage process#zg steps

2.4.1. hnage capture

Our analysis was focused on GABA-immunoreac-
tire (GABA-IR) terminals closely apposed to pyrami-

dal cells of layer V of the somatosensory cortex.

Pyramidal neurons were identified by round or oval
contours and a distinct apical dendrite. No GABA-IR

product was present in the soma of these cells.
Once a pyramidal cell was selected to be analyzed.

the light source intensity for the microscope and the

video control menu (gain and offset) under NIH-Im-

age were adjusted until the peak intensity of the grab'

level displayed from the live histogram was close to

the midpoint of the range between 0 and 255. Then,

the microscope stage was moved off the tissue without

changing any video control settings, and a blank field

was captured. The latter was stored in the temporal'

memory of the system. Subsequent cell images, under
software control, were captured 16 times and then

were averaged to reduce random electronic noise orig-

inated from various sources including the camera's

CCD sensors, frame grabber, and monitor (lnou6,

1986). The software automatically subtracted the

blank field from the averaged images before the final

images were captured by the frame grabber to further

improve the signal to noise ratio. Thus. GABA-IR

terminals in the captured images appeared to stand
out better and random noise was reduced. To maxi-

mize use of computer storage space, the final captured

images were cropped to the size of each pyramidal

cell, usually at least 260 x 300 (horizontal x vertical)

pixels in size, and saved. Further image processing
and analysis was performed on those cropped images.
Neurons from both control and experimental sections

were captured without changing light and video set-

tings.
A light microscopic microphotograph under oil im-

mersion depicts pyramidal cells outlined by GABA-IR
terminals (Fig. 1A). Fig. IB shows the captured and

cropped digital image of one cell.
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A!

Fig. I. (A) Microphotograph of pyramidal cells (PC) outlined by GABA-IR terminals (arrov, heads_ in layer V of the hindlimb representation of

the rat somatosensor', cortex. Magnification is 600 x . IBI Cropped digital square image of a pyramidal cell soma (PCI outlined by GABA-IR

terminals (tl captured from a microscopic slide viewed under 100 x oil immersion objective: n. nucleolus.

2.4.2. Prep,'ocesshlg of the digital hmlge

Under the Process menu in the software, a type of

neighborhood ranking operation--median filter with a

3 × 3 pixel matrix--was used to reduce electronic noise

in the captured image. This filter sorts the nine pixels in

each 3 × 3 neighboring region and replaces each center

pixel from the source image by the median value of its

eight neighbors. The effect is to remove all pixels that

are darker or brighter than their neighbors, and thus
remove noise. This is a linear filter operation in which

no information is lost from the original image (Russ.

1994). Following median filtering, a sharpening process

(also under the Process menu) to enhance the

boundaries of terminals was applied.

Fig. 2 shows a flow chart of the image processing

steps.

2.5. hnage analysis steps

2.5.1. Fast Fourier Transform (FFT)
Fourier Transform (FFT) routines were employed to

analyze immunoreactive terminals outlining pyramidal

cells in layer V of the hindlimb representation of the

somatosensory cortex. The algorithm used in NIH-Im-

age v.1.59 and subsequent versions uses the computa-

tionally advantageous Fast Hartley Transform or FHT,
(Bracewell, 1986). a close relative of the well known

Fast Fourier Transform. The FHT was originally, im-

plemented by Arlo Reeves (1990) in his spin-off version

of Image FFT. These routines were written in assembly

language specific for the 68 000 processor for v.1.28 of

NIH-Image. They' have now been adapted to current

chip technology in v.1.59.

2.5.2. FFT macros

FFT macros are invoked initially using "Load

macros" under the Special menu. A square area. com-

prised of 128 × 128 or 256 × 256 pixels (the size of this

selected area must be a power of two, a requirement of

the FFT). was selected by applying one of the proce-

dures in the FFT macros. The FFT was performed on

a square area of the image to obtain a power spectrum

image in the frequency' domain (Fig. 3). Different spa-

tial signals from the original image were represented as
different frequencies at various distances from the cen-

ter of the power spectrum, with concentration of lowest
frequencies closer to the center, and the higher frequen-

cies further away from the center.

2.5.3. hn'erse FFT

A software filter (under FFT macros in the Special

menu), size 80% (retaining 80% of the original frequen-
cies), and a transition zone. with a width of 20°'o. was

created and applied to all cells for analysis (screen

display in Fig. 4). When an inverse FFT with filter

procedure (under FFT macros) was employed, the in-
formation in the frequency' domain is transformed back

to the spatial domain (screen display in Figs. 4 and 5).

This operation restores the original image with the high

frequencies suppressed, making the image of the termi-
nal area more prominent.
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2.5.4. Boolean "AND'ing amt thresholding

In this step the original image was pasted to the

transformed image using the Boolean logic operation

"AND' (under 'Paste control' option in Windows

menu), so that the terminals in focus were clearly

delineated from the background (screen display in Fi-

gs. 6 and 7). If a cell was larger than the 256 x 256

area, a composite of squares was made, using Boolean

logic 'OR' under 'Paste control' to match the squares.

As to the threshold, instead of having to adjust it

according to each individual image, in this application

the threshold end point was set at 128 for all images.

This end point consistently selected all pixels of the

terminals, whereas in settings beyond 128 many pixels

would remain unselected. A binary image was then

Image Processing Steps

Adjust microscope [light intensity

I Adjust CCD camera's gain andoffset from NIH.Image software

I
Capture a blank
field and save

I
Capture 16 frames ]
and average I

I Subtract blank field [from the averaged image

Crop the image down to Ithe neuron size and save

I Use median filter [to remove noise

Use sharpen filter Ito enhance edges

Fig. 2. FIo_ chart of the image processing steps.

Fig. 3. Po_'er spectrum of a pyramidal cell produced b_ FFT of a

square image in the frequency domain.

created that revealed the terminal area in black

against a white background (Fig. 8).

2.5.5. Measurements

The terminal area was measured on binary images

and the perimeter of the cell bodies was estimated on

gray scale images. The PENCIL tool in the software

was employed to separate the clearly delineated termi-

nals in close apposition to the pyramidal cell from those

axon terminals that were not apposed (Fig. 8). To
measure the area of the terminal, the WAND tool, an

automatic measuring tool (highlighted in Tools window

in Fig. 8), was employed to count the number of pixels

in the black zone, when the area measurement option in

the software was selected. With the shift key depressed.

individual measurements were added together. The

perimeter of the pyramidal cell body was estimated by

using the POLYGON tool to trace the outline of the

soma [Fig, 9). The dendritic gaps [apical and basal)

were subtracted from the perimeter measurement.
A flow chart of the image analysis steps is shown in

Fig. 10.

2.6. Statistical analysis

All measurements were exported directly into Excel

(Microsoft, Redmond, WA) for easy record keeping.

and for easy computation of the ratio of the area of the

terminal to the perimeter of the soma. The ratios from

all the cells analyzed were then exported into Super-

ANOVA (Abacus, Berkeley, CA) and a one-factor
ANOVA was used to evaluate the effect of different

experimental conditions on the area occupied by
GABA-IR terminals apposed to pyramidal cells.
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File Edit Options Process Analyze Special Stacks lliindows

LUT Tools 95-5R. pyr6.boltom<,

A ,i_.llli ..... " l_' :

_ -l-q_ <<InverseFFT 3>>¢,_17] --=

iP

' i_ -_I_

Map .'_ _ ,

Q

Filter,>

Fig. 4. Screen display of NIH-image software. Upper left comer: square image of a pyramidal cell: upper right comer: filter [size: 80% in black;
-0,o transition width {arrowheadsl]: lower left comer: pyramidal cell soma outlined by GABA-IR terminals after inverse FFT aith filter; lov_er
right comer: resulting image from Boolean 'AND" ing the two images from the left side of the screen.

3. Example of data analysis

As part of an ongoing project in our laboratory.

the procedure that has been described was employed

to analyze the area occupied by GABA-immunoreac-

L

.... 77.]

Fig. 5. Resulting image from applying inverse FFT with filter (size:
80°'_, transition width 20%) restoring the power spectrum image to
the spatial domain. PC. pyramidal cell; t, terminals; n, nucleolus.

tive terminals apposed to pyramidal cells in layer V of

the hindlimb representation of the rat somatosensory

cortex following 14-day exposures to chronic hyper-

gravity (3 G) produced by centrifugation° A signifi-
cant reduction in the GABA-immunolabeled terminal

area was found with respect to the control group. A

total of 100 pyramidal ceils, each from the control

group and from the rats exposed to hypergravity were
analyzed. The ratio of the area of GABA-IR termi-

nals to perimeter of pyramidal cell soma was 8.122 +

0.259 (mean + S.E.M.) for the control and

5.008 +0.206 for the hypergravity group (P < 0.0001).
These results demonstrate that the method is effective

in determining quantitative differences in immunore-

active terminals (Fig. 11).

4. Discussion

The FFT applied to two-dimensional images is useful

for various purposes, such as removing noise for image
restoration, finding the periodicity in biological speci-

mens, or for image enhancement to remove motion

blur. For example, Russ (1994) has pointed out that a

typical image analyst often avoids analysis in the fre-

quency domain because of difficulties in relating the
questions to be asked to the problems encountered in

image analysis procedures. But with modern day soft-
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'IJle tdlt Options Process Analyze Spetial Stacks Windows

Filter _,

• .5 A

Mall

95-5R, pyr6,bottom_

-_ ,,. _II._,_,

i_ <<Inverse FFT 5>>o _I_1

I "4!.

-1

A

Paste Control

Transfer Mode

E And v]

Scale MathC_

Live Paste []

Fig 6. Screen displa.', shmxing paste control xsindow _sith Boolean ".AND" selected• The rest of the screen is similar _o Fig. 4.

ware such as NIH-Image "one does not need to deal

deeply with the mathematics to arrive at a practical

working knowledge of these techniques" (Russ, 1994;

Fig. 7. The resulting image from Boolean "ANDing the square image

(Fig. IB) to the in'.erse FFT image (Fig. 5). GABA-IR terminals are

clearly seen in the foreground. PC. p} ramidal cell soma: t. terminals.

/3 = 283). An important property of FFT is that it can

be reversed. The inverse FFT applied to the "fotavard"

FFT, i.e., the power spectrum of an image, restores the

original image• Filtering in the frequency domain be-

fore applying the inverse FFT, such as we did with the

h_j_,l _

._L •

_a
m "#

-,+_

Fig. 8. Binar} image alter thresholding at 128 sho_ing terminal area

in black apposed to a pyramidal cell in _hite. Axon terminals not

apposed ha_e already been separated (arro_heads). The WAND tool

is highlighted in Tools _indo_s. PC, pyramidal cell soma: t. terminals.
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Fig. 9. Gray scale image of pyramidal cell soma (PC) with perimeter

outlined employing the POLYGON tool (highlighted in Tools _in-

dowl: t. terminals.

creation of the filter in the image analysis steps, re-
moves most of the noise at higher frequencies. The
analysis of images in the frequency domain (by applica-
tion of FFT), was more efficient than processing in the
spatial domain. The latter would have required many
different steps of filtering and image mathematics with
less satisfactory results. Using the inverse FFT with
filtering, and then using the Boolean logic operation.
"AND'ing from the original image to the transformed
image is essentially adding the signals together, thus
bringing out the terminals into the focal plane and
clearly differentiating them from the background. Fur-
thermore, there is an definite endpoint of threshold at
128 that avoids subjective manipulation of threshold
that could affect the results. Thresholding is a common
step applied to the digital image before measuring. The
traditional approach is to define a range of brightness
values in the original image so that all the pixels within
this range are selected as belonging to the foreground
and measured, while all the other pixels belonging to
the background are rejected. Since for practical reasons
a large number of cells are analyzed over a period of
several days, image capture from individual sections is
often performed on different days. Thus, changes in
lighting conditions may occur. However, after the FFT
procedure is applied, a uniform threshold set at 128 can
be employed for each cell from any section regardless
of variations in lighting conditions.

We believe that the procedure described in the
present report is useful since it increases the accuracy of
the analysis by decreasing subjective interpretation and
avoiding the difficulties and shortcomings presented by,

for example, the quantitative evaluation of optical den-
sity in samples stained with immunocytochemical meth-
ods. These include variations in labeling intensity, the
need for a strict control of antibody concentration and

times of incubation, the possibility of tissue alterations
such as the compression of labeled profiles into smaller

Image Analysis Steps

Create a filter [(size 80%, transition 20%)

I

I Make a duplicate copy of Ithe original image

I
Make square images I

Make composite imageusing Paste OR to match

!

IFFT on square images I

I
Inverse FFT with filter(transformed image)

I
1

Paste transformed image I

onto the duplicate image I
I

[ Paste AND the original image Ito the transformed image

I

ISetthresh°ldat128f°r Ithe resulting image

I
Use WAND tool and with the SHIFT key
down, select the GABA-IR terminals to

compute the total area

E
Deselect threshold to convert back to

the gray scale image. Use POLYGON
tool to trace the outline of the soma

Fig. 10. FIo_ chart of the image analysis steps.
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Fig. I1. GABA-immunoreactivity expressed as the ratio of terminal

area to perimeter of the pyramidal cell body for animals in the

control and centrifuged groups.

somatosensory cortex (e.g., hindlimb representation)

related to proprioceptive inputs from muscles. In this
case we believe that, for example, the concentration of

the antigen, important for the quantitative assessment

of optical density, is less significant. More relevant to

our purposes, if differences in GABA immunoreactivity
are found between control and experimental samples, is

to search for alterations in the synthetic activity of the
transmitter.

Finally, we wish to emphasize some of the advan-

tages of our procedure. They include the use of a

common desktop computer, relatively inexpensive

equipment, readily available free software to attain

quantitative analysis, a standard procedure that can be

easily followed, and minimal training requirements.

(Expert help is also available from the NIH-Image,

e-mail group located in soils.umm.edu). The methods
described in this paper should well serve the purposes

of others attempting to answer scientific questions of a
similar nature.

areas that may result in erroneous determinations of

density and the use of standards containing a known

amount of antigen, since differences in optical density

may not reflect changes in the concentration of the

antigen (Mize, 1989, 1994). These drawbacks are fur-

ther confounded by the possibility of uneven lighting

during image capturing and monitor display that, with

our procedure, are less important variables. The same

can be said of labeling intensity of immunoreactive

products. Although all steps of the immunocytochemi-

cal staining for both control and experimental sections

were performed in the same solutions to avoid varia-

tions in labeling intensity, our procedure allows for

such variations to occur without significantly impacting

the results. As many researchers have learned, optical

density measurements on immunoperoxidase products

by means of light microscopy requires a sophisticated

image analysis system. To perform those measurements,

gray scale images have to be converted into binary

images through thresholding. Threshoiding that would

be optimal for one area, would invariably be unsatisfac-

tory for other areas. Thus, some of the needed features

might be rejected or many of the background pixels

might be included leading to erroneous result.

In the final analysis, the methodology to be employed

should depend upon the questions to be answered. In

our research we are interested in determining differ-

ences in the area occupied by GABA immunolabeled

terminals apposed to pyramidal cells in regions of the
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or tissue staining results and in subsequen! trouble-shooting. This _y _
used to optimize several in situ amplification parameters, including MECI'- ' rl" •

concentrations for designated primer sets, bovine _rum albumin blockinOg-o_

the exposed, charged slide surfaces and the temperature and time periods of
thermocycling segments.

Measurement of the actual slide temperature during cycling profiles is
important for evaluation of the adequacy of program settings for in $itu am.

plification. Instruments that allow the slide to reach the selected tempemtun_
rapidly will improve the efficiency of in silu gene amplification re.actions.

Eight different thermocycling instruments, designed for use with microscope
slides, were programmed with temperature cycling profiles having identical

setpoints and ,soak periods. Actual temperature profiles measured on a micro-

scope slide varied among the instruments dependent upon the instrument's

algorithm, internal temperature calibration and the time necessary to attain

the set temperature. The ability of each instrument to amplify DNA in solu-

tion PCR reactions on a microscope slide was assessed utilizing the assay de-
scribed above. The DNA amplification efficiencies achieved on different in-

struments ranged from the generation of no detectable specific product band

to the generation of a single product of the expected size. The appearance of

nonspecific product and background amplification correlated with intrinsi-

cally long cooling time and less-than-optimal annealing temperatures. Elimi-

nation of background bands and improved amplification efficiency on instru-

ments with slow cooling rates could be achieved by simply shortening the

soak times. This resulted in an overall shortened cycle time and led to ampli-
fication efficiencies comparable to those achieved with faster machines.

Several of the characteristics of each machine that are relevant to thermo-

cycling performance were assessed. These properties are summarized in
Table 1.

Affordable Image Analysis System to Quantify
Immunoreactive Terminals in the Somatosen-
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Quantification of immunoreactive product is difficult because many

methods of analysis rely on subjective rating. The present report describes an

affordable and easy-to-use image analysis system based on public domain

software and common laboratory equipment. We demonstrate this system by

quantifying immunoreactive terminals in the somatosensory cortex using 40

tam-thick coronal sections of the rat brain. Tissue sections from control and

treated animals were immunoreacted together (I) with GABA antiserum

(Cat. #AB 131 ; Chemicon International, Temecula, CA, USA) and viewed us-

ing a light microscope (Leitz Diaplan) equipped with a 100× oil immersion

objective. Images were captured using a Sierra Scientific (Sunnyvale, CA.
USA) Model 430 CCD camera mounted on the microscope body with a

Scion Technology (Friederick, MD. USA) LG-3 frame grabber board in-

stalled in a Macintosh Centris 650 computer.

As an example, our analysis was focused on pyramidal cells of the Vth

layer of the somatosensory cortex that were outlined by GABA-immunore-

active (GABA-IR) terminals. Pyramidal neurons were identified by round or

oval contours and a distinct apical dendrite. No GABA-IR product was pre-

sent in the body of these cells. GABA-IR terminals closely apposed to the

pyramidal cells were considered for our analysis.

The public domain software, NIH-Image v.1.59 (written by Wayne Ras-

band, NIMH. Bethesda, and updated frequently), was used to capture images

and to analyze the GABA-IR terminals. This software is available electroni-

cally from zippy.nih.nimh.govlpub/nih-image/nih-image or from the NIH

Web site (http:llrsb.info.nih.govlnih-image). Because many laboratories have

the basic components of this system, the most common expense for imple-

mentation would be the cost of a frame grabber board (typically less than
$I000) and cables to interconnect the camera, computer and associated pe-

ripherals.

B

Figure I. (A)An image of a pyramidal cell outlined by GABA-IR terminals. (B) The
resulting image from ANDing the original image to the transformed image. Arrows
point to conlour_GABA-IR terminals.

Starting will) v. 1.59, NIH-Image has incorporated the Fast Fourier Trans-
form (FFT) routines that were written by Arlo Reeves (Dartmouth Universi-

ty). These routines were written in as_mbly language specific for the 68000

processor for v. 1.28 of NIH-image and have been adapted to current chip

technology in v. 1.59. We used these FFT routines to analyze immuno:_active
terminals outlining pyramidal cells in the Vth layer of the hindlimb represen-

tation of the ._mmtosensory cortex and to compare changes after experimen-

tal manipulations. A pyramidal cell outlined by GABA-IR terminals is shown

in Figure I A. A type of neighborhood ranking operation--median filter with

a 3 x 3 pixel matrix--was used to reduce electronic noise in the captured im-

age. After applying the sharpening process to enhance the boundary of termi-

nals, a square area. compri_d of 128 x 128 or 256 x 256 pixels (the size of
this selected area must be a power of 2), was selected by applying one of the

prtx:edures in the FFT macro. The FFT was performed on the selected area to
obtain the power spectrum (frequency domain). The inverse FFT with filter

(size 80%, tran,,ition size 20% in our case) was then used to transform back

to the spatial domain. Next, the original image was pasted to the transformed

image using boolean "'AND", so that the terminals in focus were clearly de-

lineated from the background (see Figure I B). If a cell was larger than 256 x

256 area. a composite of squares was made. Finally, binary image was creat-

ed using the THRESHOLD operation set at 128.

The area of terminals was measured on binary images and the perimeter

of the cell bodies was measured on gray ,scale images. To measure area, the

WAND tool (with the shift key pressed) was used to .select multiple terminals
and the total area of the terminals was computed automatically. Perimeter

was measured by using the POLYGON tool to trace the outline of the soma.
The ratio of the terminal area to perimeter of the soma was selected to

compare cells from the control and the experimental groups. All measure-
ments were exported directly into Excel (Microsoft, Redmond. WA, USA)

and changes in ratios from animals exposed to different experimental condi-

tions were analyzed by ANOVA (SuperANOVA: Abacus, Berkeley. CA,

USA). No attempt was made to "'count" the number of terminals as done by

Vincent at al. {2) who also cut their .sections at 40 [am, because their proce-

dure seems highly subjective (due to thickness of sections) and lal'_rious.

The pr_vcedurc described here is efficient, and we believe that it increases the

accuracy of the analysis by decreasing subjective evaluation. (Suplx_rted by

NASA Grams NAGW-448(I and NCC 2-723 to San Jose State University
Foundation).
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